Apple i e

Apple Il Monitors Peeled

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR
LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS
WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR
ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN
NO EVENT WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR

LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT

APPLY TO YOU.

This manual is copyrighted and contains proprietary information. All
rights are reserved. This document may not, in whole or part, be
copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior comsent, in
writing, from Apple Computer Inc.

©1981 by APPLE COMPUTER INC.
19260 Bandley Drive
Cupertino, California 95@14
(408) 996-1910

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER INC.

APPLE Product #D2L0013
950-0018

Printed in USA

Apple ll

AppleIMonitors Peeled

TABLE OF CONTENTS

PREFACE vi
INTRODUCTION vii
OVERVIEW vii

CHAPTER 1
MEMORY ALLOCATION 1

1 Monitor Usage Memory Map

2 RAM Memory Allocation by Address
3 Page Zero

3 Page Zero Fields

13 Pages One through Three
13 Page One ($010¢ - G1FF)
13 Page Two ($@200 - @2FF)
13 Page Three ($$309 - (3FF)

14 Page Three Address Table

14 Pages Four through Seven & Eleven
15 Screen Memory Address Table

16 Peripheral Controller Work Areas

i MONITORS PEELED

CHAPTER 2
INPUT AND OUTPUT

17

17 Keyboard Input Division of Labor
18 Table of Routines

21 Calls to Keyboard Input Routines

21 Table of Keyboard Input Calls

24 KEYIN Routine Replacement

25 Keyboard Input Monitor Routine

26 Address Table 1 - Character Input
27 Address Table 2 - Line Input

28 Overview - Text Output to the Screen
29 Output within the Scroll Window
31 Page Zero Fields

33 Scroll Window Output Routines

34 Screen Format Control by Routine
35 Screen Format Control by Poke/Store
36 Scroll Window Data Manipulations
36 Address Table

38 Cursor Position Control

39 Address Table

41 General Text to the Screen

41 Address Table

43 Control Characters

43 Output without the Scroll Window
45 Address Table

46 Applesoft Sample Program

47 Secondary Display Areas

47 Copy Primary to Secondary

48 Set BASL,H for Secondary Display Page
48 Address Table

49 Direct Control Addresses

50 Integer BASIC Sample Program

5@ Applesoft Sample Program

TABLE OF CONTENTS

CHAPTER 3
INTERRUPT PROCESSING

53

53
54
54
55
55
56
56
57
57
58
58
58
59
61
61
61
61
62
62
62
63

Interrupt Processing

NMI Interrupt

RESET Interrupt Support
IRQ/BRK Interrupt Handling

RESET Interrupt — 01d Monitor

Address Table

RESET Interrupt - Autostart Monitor

Initialize System Configuration
Cold/Warm Determination

Power-On Initialization

System Restart

RESET Vector Modification by User
Address Table

IRQ/BRK Interrupts

IRQ/BRK Interrupt Recognition

IRQ Interrupt Handling

BRK Instruction Interrupt

BRK Instruction - Saving of Status
BRK Instruction - 01d Monitor

BRK Instruction — Autostart Monitor
Address Table

iv. MONITORS PEELED

CHAPTER 4
MISCELLANY 6

65
65
67
68
68
69
69
69
70
79
79
70
79
71
72
73
73
73
74
75
76
76
77
77
8¢
8¢
81
81

Machine Language Development Aids
Address Table
LORES Plotting
Page Zero Fields
Address Table
Data Manipulation Functions
Routines
Memory to Memory Move
Jump to Address with Registers Loaded
Increment Address Fields
Save 6582 Registers
Restore 6502 Registers
Multiply Two Byte Fields
Multiply Routine
Divide Four Byte Dividend by Two Byte Divisor
Establish a RESET Vector
Convert Hex Characters to Value for Use
Disassemble an Instruction
Address Table
Applesoft Sample Data Manipulation Program
Monitor Command Processor
Entering the Monitor Command Processor
Calling the Monitor Command Processor
Address Table
Applesoft Sample Program
Speaker use through the Monitor
Address Table
Cassette Tape Input and Output
WRITE
READ
Cassette Input/Output Internal Routines
HEADR
RD2BIT
RDBIT
RDBYTE
WRBIT
WRBYTE
Paddles, Buttons and Annunciator I/0
Game I/0 Hardware Address Table
WAIT Routine
WAIT Routine Delay Times
Use of Control-Y with Parameters
Paddle Interference - Sample Program
Registers for BASIC Monitor Calls
Decimal to Hex Conversion
Applesoft Sample Program
Step and Trace Peculiarities

TABLE OF CONTENTS v

vi MONITORS PEELED

PREFACE

The Apple II Reference Manual contains a complete assembly listing of
the Monitor program in the Apple II. The Apple II Monitors Peeled
Manual (this book) contains descriptions of the various routines in
the Monitor and address tables arranged by topic instead of in the
sequence of location within the machine. The material you find here
has been chosen and organized to allow programmers of the Apple II to
make convenient use of routines in the Monitor from their programs.

Many of the CALLable points in the Monitor fall under more than one
topic. The layout of this book is intended to minimize the
necessity of page flipping and cross referencing, so those points
which seem to be appropriately described under more than one topic
will be found in each applicable table.

This document covers the Apple II Monitor (both the 0l1d Monitor and
the Autostart Monitor versions), ROM address range $F8@@—SFFFF. This
publication does not cover BASIC, APPLESOFT, DOS, HIRES, SWEET16, or
Floating Point Arithmetic utility routines.

INTRODUCTION

There are two Monitor ROM’s available for the Apple II. The two
Monitors are identical for most functions. They differ only in certain
features. This book describes both Monitors, with indications provided
whenever the information applies to only one of the two.

Some thousands of Apple II computers have been shipped with the

earlier version of the Monitor. In this book, that will be referred

to as the 0l1d Monitor. In 1979, a new version of the Apple II Monitor
was developed. This Monitor contains new features to facilitate system
start-up and program editing, at the expense of removing the
instruction trace and single step facilities and sixteen bit multiply-
divide routine of the 0ld Monitor. This new Monitor is called the
Autostart Monmitor in this book. The Autostart Monitor is available
from Apple Computer Inc. and from many computer dealers under the

name Autostart ROM, Apple Part No. A2MP@27.

It is easy to determine which Monitor is in a machine. If the machine
comes up with the APPLE II legend at the top of the screen when the
power is turned on, the machine contains the Autostart Monitor. If the
machine comes up with the Monitor prompt (*) then it contains the 01d
Monitor.

A program can also determine whether the Monitor is the Old or the

Autostart ROM. The byte at S$FAFF (64255 or -1281) contains $¢¢ in the
Autostart and $@1 in the 0ld Monitor.

PREFACE vii

OVERVIEW

CHAPTER 1

MONITOR USAGE MEMORY MAP
Use of memory by the Monitor and by the Apple II for machine
control and display to the screen.

PAGE ZERO
Description in detail of all memory locations in page zero used

by the Monitor, indicating legal range of values and all routines
which use the location.

PAGES ONE THROUGH THREE
General descriptions of pages one and two and specific
description of fields in page three.

PAGES FOUR THROUGH SEVEN AND ELEVEN
Description of how text is maintained in "screen refresh memory"

for display on the screen, both primary and secondary display
areas for text and Low Resolution (Color) graphics.

PERIPHERAL CONTROLLER WORK AREAS
A chart showing the scratchpad areas available in RAM memory for

use by peripheral controller programs.

CHAPTER 2

KEYBOARD INPUT DIVISION OF LABOR
Descriptions of the lower level routines used by the Monitor to

read data from the keyboard, including subroutines for cursor
movement without reading characters.

USER CALLS TO KEYBOARD INPUT ROUTINES
Specifications for user calling of the routines at all levels for
input of characters from the keyboard and for user program
simulating (replacing) the keyboard as the input device.

KEYBOARD INPUT MONITOR ROUTINE
Table 1 contains addresses for character by character input from
the keyboard via the routines described in the previous section.
Table 2 contains addresses for line input from the keyboard.

OVERVIEW — TEXT OUTPUT TO THE SCREEN _
Because there are so many ways to write text to the screen, this
section contains an overview of the following pages on screen output.

TEXT OUTPUT WITHIN THE SCROLL WINDOW
Detailed description of the normal method of printing data to the
screen, as used by PRINT of BASIC, including page zero reference
table for Scroll Window services.

viii MONITORS PEELED

SCREEN FORMAT CONTROL BY ROUTINE
Table of addresses of routines in the Monitor which control the
format of the Scroll Window and the format of data display.

SCREEN FORMAT CONTROL BY POKE/STORE
Description of methods of controlling the screen display format
without calling routines in the Monitor.

SCROLL WINDOW DATA MANIPULATIONS
Table of routines which affect the data displayed in the Scroll

Window, such as clearing part of it or scrolling it.

CURSOR POSITION CONTROL .
Description of facilities for moving the cursor relative to
current position or to an absolute location.

GENERAL TEXT TO THE SCREEN
Printing data to the screen whether some other device has been
established (via CSWL) or not, and printing some things by a call
to a Monitor routine which loads the A-reg and calls COUT itself.

TEXT OUTPUT WITHOUT THE SCROLL WINDOW
Ways and means of handling the screen as a formatted display
device, with or without part of the screen being defined as a
Scroll Window.

SECONDARY DISPLAY AREAS
Different methods of getting data into the secondary text display
area.

CHAPTER 3

OVERVIEW OF INTERRUPT PROCESSING
General and specific definition of interrupts and interrupt

processing with regard to computers in general and the Apple II
in particular.

RESET INTERRUPT - OLD MONITOR
Description of handling a RESET interrupt with address table
allowing user call to subsets.

RESET INTERRUPT - AUTOSTART MONITOR
Description of handling a RESET interrupt with address table

allowing user call to subsets. Description of Soft Entry Vector
setup and use.

IRQ/BRK INTERRUPT HANDLING

Descriptions of handling these types of interrupts by both
Monitors, with Address Tables,

OVERVIEW ix

CHAPTER 4

MACHINE LANGUAGE DEVELOPMENT AIDS
Address table for routines in the Monitor which can be called to

provide debugging information either by moving the information to
some other place in memory or printing information through COUT.

LORES PLOTTING
Descriptions of the routines in the Monitor which support this
function, with a table of addresses for directly calling them.

DATA MANIPULATION FUNCTIONS
Description of the routines in the Monitor which move data from
one place to another, or change the format, or operate on one
item with regard to another.

MONITOR COMMAND PROCESSOR
How to call the Monitor Command Processor, to have it execute
Monitor commands and return to caller or stay in Monitor mode.

SPEAKER (BELL) USE THROUGH THE MONITOR
No music here. This is a description of how to use the speaker as
a signaling device in the same manner as the error alarm or RESET
key alarm.

CASSETTE TAPE INPUT AND OUTPUT

Description of all the routines involved with reading or writing
of tape, with user call information specified for the high level

routines. Includes list of calling programs for each point.

PADDLES, BUTTONS, AND ANNUNCIATOR I1/0
Description of paddle reading for the machine language programmer
and addresses to use for all these devices.

WAIT ROUTINE
This routine will take control of the machine for a length of
time depending upon the input A-reg value. Table and formula are
provided for use where interval between events is critical.

USE OF CONTROL-Y WITH PARAMETERS
Sample machine language program for rapid reading of the
paddles. ’

REGISTERS FOR BASIC MONITOR CALLS
The Monitor GO command routine makes it possible to call from
BASIC most Monitor routines which receive input in registers.

DECIMAL TO HEX CONVERSION
A sample program that shows how to convert from decimal to
hexadecimal.

STEP AND TRACE PECULIARITIES
Differences between operation of the machine with and without
Single Step in the 0ld Monitor.

x MONITORS PEELED

CHAPTER 1

MEMORY ALLOCATION

MONITOR USAGE MEMORY MAP

Memory 1is divided into 256 byte sections, generally referred to as
"pages". As with most countable items in computers, memory pages are
numbered from zero. Page zero is very special in that the full
address of a byte in page zero may be expressed in a single byte.
Many 652 processor instructions are only two bytes in length because
the operand is in page zero. Thus, Monitor usage of page zero
receives heavy treatment in the following section.

Page one (address range $@10¢-$@#1FF) is also special in the Apple II.
This entire 256 byte area is called the "stack". The stack is a
temporary storage area for which special instructions are provided in
the 65¢2. The contents of the A-register or P-register may be pushed
onto the stack, which means the contents of the indicated register
are stored in the stack at the location currently specified by the
S-register: then the S-register is decremented. Data may be pulled or
popped from the stack, which means that the S-register is
incremented, and then the byte pointed at by the S-register is picked
up into the appropriate register. A JSR instruction causes the
current contents of the Program Counter to be pushed onto the stack
before the jump. An RTS instruction pulls two bytes from the stack
into the Program Counter.

The Monitor contains instructions which use the stack. However, the
Monitor does not initialize the stack pointer register to a preset

value or load the S-reg at any time.

Page two (address range $02¢¢-$@2FF) is defined in the Apple II as the
keyboard input area. The Monitor routines which support reading of
the keyboard store the information into page two for use by the
calling program after the next carriage return is detected.

Page three is address range $@30¢~$@3FF. Most of this area is unused
by the Monitor. Quite often the first 20¢ or so bytes are used for
machine language programs called by APPLESOFT or BASIC programs. The
Monitor uses only the last 16 bytes, as described in the Page Three
Address Table. (Note, however, that DOS uses the 32 bytes before the
Monitor’s 16.)

Pages four through seven comprise the primary text or color graphics
display area. Pages eight thru eleven comprise the secondary text or
color graphics display area when that feature of the Apple II is
used. However, page eight is generally the first page of the user
area. In the address table, pages four thru seven and eight through

eleven are described together when specifying memory address per
screen line.

MEMORY ALLOCATION 1

From address $@80@ to the end of memory in the machine is the user
area for programs and data. However, if High Resolution Graphics is
in use, then memory area from $2¢@@ through $3FFF is the primary
display area for that function and $400¢ through $5FFF may be used as
the secondary display area for that function.

RAM MEMORY ALLOCATION BY ADDRESS

¢@¢@ |Page zero
Q@FF |

$1003 1Stack
@1FF |

220¢ |Keyboard Input
@2FF |

#30@ |Available
@3CF |

@#3Dp@ {DOS

@3EF |

@3F® |Vectors
@3FF |

$40¢ |Primary Text
@7FF {and LORES Area

@803 (User Program Secondary Text |RAM APPLESOFT
|land Data space |and LORES COMPILER/
§BFF |to RAM size. INTERPRETER
|
|ROM APPLESOFT
|USER PROGRAM
2000 Primary HIRES
| INTEGER

2FFF |BASIC DATA
I

3FFF | RAM APPLESOFT
I USER PROGRAM
4p0¢ | Secondary HIRES
I
5FFF |
}
I

3FFF -end 16K machine
l
7FFF —end 32K machine

|
BFFF —end 48K machine

2 MONITORS PEELED

PAGE ZERO

The Monitor makes use of the page zero locations from 32 ($28) through
73 ($49) for general functions and normal operations. Locations 74-77
($4A-4D) are mot touched by the Monitor. Locations 78-79 ($4E-4F) are
modified as described below to provide a random number starting point
for an application program.

In addition, the 0ld Monitor uses locations 8¢-85 ($5@-55) for the 16
bit Multiply and Divide routines (which are available for problem
program use but are not used by any other part of the Monitor). These
locations are not used by the Autostart Monitor.,

The Autostart Monitor uses locations @ and 1 during system
initialization. This initialization is described in the section on
"RESET Interrupt — Autostart Monitor" and below in describing the use
of locations § and 1.

PAGE ZERO FIELDS

Dec Hex Monitor
Addr Addr Label Description

8¢ spg Locg These locations are used by the Autostart Monitor

g1 $¢1 Locl during the automatic Disk Bootstrap function which
takes place when the computer is powered up. Using
these locations for indirect addressing, the slot
addresses are checked - from slot 7 down thru
slot 1 - to determine presence of a disk controller.
If one is found, a Jump Indirect via $@@-01 is
executed to initiate the bootstrap operation.

32 $2¢0 WNDLFT Left column of the Scroll Window:
Range is ¢ to 39 ($27).
This field is used only in VTABZ which sets BASL,H
to the memory location corresponding to CV and
WNDLFT. The contents, when changed by user
program, become effective on the next scroll
operation, clear to end of page operation, or
carriage return output. CH contains cursor
horizontal position relative to (WNDLFT).

After changing the contents of WNDLFT, either CALL
VTAB or print a carriage return to the screen to
make it take effect.

33 $21 WNDWDTH Width of the Scroll Window:
Range is 1 to 4@-(WNDLFT).
When a character is written through COUT to the
screen it is placed at (BASL),(CH), after which CH
is incremented. Then (CH) is compared with
(WNDWDTH) to determine whether the cursor has
exceeded the right margin of the Scroll Window.

MEMORY ALLOCATION 3

Dec Hex Monitor
Addr Addr Label

Description

34 $22 WNDTOP

35 $23 WNDBTM

36§24 CH

37 825 v

4 MONITORS PEELED

Top line of the Scroll Window:
Range is @ to 22 ($16) for full text screen.

Range is 2¢ to 22 ($14 and $15) for mixed graphics
and text.

Valid values for VIAB in Basics are 21, 22, 23,
This field is used during a scroll operation to
indicate the line on which the operation should
start. It is also the line on which the cursor is
placed on completion of a HOME operation (clear
the window, place cursor at top left).

Nominally, bottom line of Scroll Window:

Range is (WNDTOP)+1 to 24 ($18).

WNDBTM contains the number of the first line below
the Scroll Window. Contents of WNDBTM are tested
only on output of a carriage return ($8D) or 1line
feed ($8A). It is used by Clear to End of Page and
by Scroll routines.

Displacement from WNDLFT where next character to
the screen will be placed: Range is @ to
(WNDWDTH) - 1. After the screen output routine
STOADV places a character into the screen area as
part of normal character output, CH is then
incremented and compared to WNDWDTH. If CH is not
less than WNDWDTH, a carriage return will bhe
simulated.

Note that CH is used for echoing keyboard input to
the screen by the Monitor GETLN etc. routines.

Vertical screen position (line number) for next
character to be written to the screen: Range is @
to 23 ($17). The content of CV is relative to the
top of the screen, not to the top of the Scroll
Window. It may be set by loading the desired line
number into A-reg and calling TABV. It may be set
by POKEing the line number into CV and then
calling VITAB. Actual storage of a character into
the screen area includes use of BASL,H for line
mumber, not CV. The calls above to VTAB or TABV
are to set BASL,H from CV (and WNDLFT) for
immediate future reference.

If CV is at or below WNDBTM it will remain on the
current screen line as carriage returns go by
while the contents of the Scroll Window will be
scrolled for each.

Dec Hex Monitor
Addr Addr Label Description

38 $26 GBASL Memory address within the screen area of the left

39 $27 GBASH end point of the desired line for LORES plot. This
field is set by the GBASCALC routine to the memory

location appropriate for the line number specified
in the A-reg. See MASK at $2E.

40 $28 BASL This two byte field is the memory address for the

41 $29 BASH left end character position of the current text line,
line, within the Scroll Window. The contents are a

function of CV and WNDLFT.

This field is set by the BASCALC routine to point
to the memory address for the left end of the
screen line specified in the A-reg. This call to
BASCALC is usually accomplished by the VTAB
routine, which then adds (WNDLFT) to BASL,H to
point to the left end of the line within the
Scroll Window,

42 $2A BAS2L This two byte field is used as a work area only

43 $2B BAS2H during a scroll operation. It is the destination
line pointer used as each line is moved to the
position above current.

44 $2C H2 Right end point of horizontal line being drawn by
the HLINE routine: Range is @ to 39 ($27).

This byte is set by the calling program before
HLINE is called.

" " LMNEM Low byte of two byte pointer (LMNEM, RMNEM) used
by Disassembler as index to mnemonics table.

U " RTNL Save area used by the Instruction Trace routine
of the 0ld Monitor.

Bottom point of a vertical line being drawn by
VLINE routine: Range is § to 39 ($27) for mixed
screen, @ to 47 ($2F) for full screen graphics.
This byte must be set before VLINE is called. Note
that this byte is used when the Clear Screen
(CLRSCR) routine uses VLINE to clear the screen.

" " RMNEM Used with IMNEM as table index for mmemonic table
by the Disassembler.

' " RTNH Used with RINL as a save area by the Instruction
Trace routine of the 0l1d Monitor.

MEMORY ALLOCATION &

Dec Hex Monitor
Addr Addr Label

Description

46 $2E MASK

" " FORMAT

" " CHKSUM

47 $2F LASTIN

" " LENGTH

"™ SIGN

6 MONITORS PEELED

With this label, this location is used as a $@F
or $FP by PLOT depending on whether the point is
on the high side or the low side of the two
horizontal plot lines represented by the GBASL,H
pointer. Each location of the form (GBASL),Y
contains two points on the screen, one above the
other. MASK is used to set the appropriate one
while leaving the other unchanged.

Using this label, the Disassembler uses this byte
as temporary storage for the code which indicates
the format of the instruction for display
purposes.

This byte i1s used during cassette tape read to
continually accumulate the checksum which will

be compared to that generated during the write
operation which created the record. This byte is
initialized to zero at the beginning of a tape
read. As each byte is stored into memory it is
Exclusively ORed against CHKSUM. After the last
byte has been stored, one more byte is read from
the tape and compared to CHKSUM. If equal, a good
read may be assumed. As this result is not finally
stored back into CHKSUM, that field cannot be used
by the calling program to determine success or
failure of the read. A method for this
determination will be found in the section
"Cassette Tape Input and Output".

With this label, the RDBIT routine uses this byte
as a work area to determine whether the sense of
input from the cassette tape input register has
changed.

This field is set by the Disassembler to indicate
the length of the instruction. After output of the
disassembled instruction, PCADJ uses this value to
compute new values for PCL,H, which are returned
to caller in the A and Y reg for user storage to
PCL,H. Instruction trace in the 0ld Monitor also
uses this field to indicate the number of bytes to
move to the instruction trace execution work area

(XQT).

After a call to MULPM or DIVPM (signed 16 bit
multiply or divide in the 0l1d Monitor), the $@1
bit of this byte is set 1f the always-positive
result is to be complemented by the calling
program.

Dec Hex
Addr Addr Label

Monitor

Description

48

49

5¢

51

$3¢

$31

$32

$33

COLOR

MODE

INVFLG

PROMPT

This byte contains the code for the color of
points to be placed on the screen in graphics
mode. The SETCOL routine is entered with a value
in the low order four bits of the A-reg. This
value is then placed in both the high and low
nibbles of COLOR. COLOR is then used with MASK in
setting the value of the byte in the screen area
to accomplish setting a particular point to the
selected color.

Color can be set directly by stuffing the value
multiplied by $11 in color. For example,

color = orange (9): From assembly - LDA #99,
STA color. From BASIC - POKE 48, 9*17.

This byte is used by the Monitor command
processing routines to control parsing and to
control operations when a blank is encountered
after the hex digits. For example, a hex address
followed by a colon causes setting of MODE so that
during further processing of the input line each
blank encountered signifies end of a hex value to
be placed in memory. During parsing, the contents
of MODE indicate where the hex values should be
stored for use when the command itself is
encountered. MODE is set to appropriate values by
plus, minus, colon, and period.

This byte is a mask used by COUT1 to cause
characters written to the screen area to display
white on black (INVFLG=$FF) or black on white
(INVFLG=$3F) or blinking (INVFLG=$7F). This field
is set to SFF when a RESET occurs by the routine
at SETNORM. The routine called SETINV can be
called to set reverse video. The Monitor does not
set blinking.

This byte contains the prompt character which is
written to the screen by the Monitor GETLN routine
in preparation for reading a line of characters
from the keyboard. When the RESET key 1s pressed,
the 01d Monitor quickly enters the MON routine, at
which point the PROMPT field is set to $AA, "*",
The Autostart Monitor also sets the "*" prompt
character at the MON routine, but this is not
necessarily a part of processing the RESET
interrupt.

MEMORY ALLOCATION 7

Dec Hex Monitor
Addr Addr Label

Description

52 $34 YSAV

53 §35 YSAV1

54 $36 CSWL
55 §37 CSWH

56 $38 KSWL
57 839 KSWH

58 $3A PCL
59 $3B PCH

8 MONITORS PEELED

This byte is a save area used by the Monitor
Command Processor. The Y~reg is used by the
Command Processor in indexing through the input
line. When a command has been decoded, the Y-reg is
saved at YSAV before going to the selected service
routine. On return to the Command Processor, the
Y-reg is reloaded from here before transfer of
control to NXTITM to continue scanning the input
line.

This byte is a save area for the Y-reg across a
call to the screen output routines. Y-reg is saved
and restored in the COUT1 routine.

This two byte field contains the address of the
routine which is to receive and dispose of output
characters. When the RESET key is pressed this
field is initialized to point to COUT1 to send
output characters to the screen. Entering a
Monitor Command nPc (n=port number, Pc=control-P)
will cause the Monitor to set CSWL to @@, CSWH to
Cn. The routine at that location will then receive

(in the A-reg) each byte "written" through COUT,
which is a JMP (CSWL).

If the Monitor Command "@Pc" is executed, CSWL,H
is set to point to COUT1 instead of to CP@(.

This two byte field contains the address of the
user input routine. It is set by RESET key
processing to point to KEYIN which gets its input
from the keyboard. The Monitor Command nKc (n=port
number, Kec=control-K) causes the setting of KSWL
to @B, KSWH to Cn. This routine is then called any
time the Monitor or executing program asks for
another byte of input by calling RDKEY or one of
the routines which in turn calls RDKEY.

The Monitor Command "@Kc" results in setting
KSWL,H to point to KEYIN instead of to C@@@.

This field is a save and control area for the
Program Counter. In addition to the Mini Assembler

to keep track of where the next instruction is to
be placed.

When a BRK instruction is executed, this field is
set to indicate the address stacked by the 6532,

pointing to two bytes beyond the BRK instruction

executed.

Dec Hex
Addr Addr Label

Monitor

Description

6§ $3C XQT
XQTNZ
61-67 $3D~$43

60 $3C AlL
61 $3D AIH

This field is used during Monitor commands L and G
(Disassembler and Monitor "GOTO0"). During
disassembly of instructions this field is
incremented as required. This field is used for a
Jump Indirect in execution of the Monitor G
command.

Updating of this field is accomplished with the
assistance of the PCADJ routine whenever use
requires incrementing in accordance with the

length of the instructions. (See LENGTH at 47 or
$2F.) On return from PCADJ, store A to PCL and Y

to PCH to accomplish update.

This field is used by the 0ld Monitor in support
of Monitor commands S and T (single instruction
step and instruction trace). For those functions,
it is maintained as a pointer to the next
instruction to be handled.

This field is used as a work area for instruction
step and trace in the 01d Monitor. The field is
elight bytes long and overlays AlL,H; A2L,H; A3L,H;
and A4L,H. The next instruction to be executed
(indicated by the contents of PCL,H) is moved to

this field, possibly modified depending on
instruction type, and then executed here. This

field is not defined in the Autostart Monitor.

Multipurpose Monitor work area:
May be clobbered by Instruction Trace in
the 01d Monitor; see XQT above.

When the Monitor begins processing a command, MODE
is initialized to zero. As the input line is
scanned, hex digits are first placed into A2L,H.
From there they are moved also to AlL,H and A3L,H
as long as MODE remains zero. When a plus, minus,
colon, or period is encountered, MODE is modified
to indicate which, and AlL,H will continue to
contain the value, terminated by the operator
encountered.

AlL,H is the primary index for the BLANK Monitor
command, memory examine or display.

AlL,H contains the addend for the Monitor ADD
command .

MEMORY ALLOCATION 9

Dec Hex Monitor
Addr Addr Label Description

AlL,H contains the minuend for the Monitor
SUBTRACT command.

AlL,H is the source field pointer during the
Monitor MOVE command.

AlL,H is one of the two indices used in the
Monitor VERIFY command.

AlL,H is the source field from which PCL,H is set
on L and G Monitor commands, and the 0ld Monitor
commands S and T, if an address is specified. If
no address is used in the input line, then PCL,H
is the residue of the last command which
maintained or used it.

AlL,H is the memory pointer used for cassette tape
READ and WRITE Monitor operations.

Monitor routine NXTAl increments AlL,H by one and
then compares the result to A2L,H. If AZL,H is
less than AlL,H, then Carry is set when control is
returned to the calling program.

62 $3E A2L Multipurpose Monitor work area:

63 $3F A2H May be clobbered by Instruction Trace in
the O01d Monitor; see XQT above.

This field is the receiving field into which hex
data is stored from the input area during Monitor
Command parsing. When the command itself is
encountered, A2L,H contains the last parameter
entered. While MODE contains zero (until a plus,
minus, colon, or period is encountered) A2L,H is
continually copied into AIL,H and A3L,H. 1If a
"less than'" sign is encountered, A2L,H is
immediately copied to AAL,H and AS5L,H.

A2L,H is used to terminate examine (memory
display), tape write, tape read, memory move, and
memory verify operations.

A2L,H contains the subtrahend in a Monitor
SUBTRACT command operation.

A2L,H contains the augend in a Monitor ADD command
operation.

A2L,H is the source field and A3L,H is maintained
as the pointer for the Monitor STORE command.

10 MONITORS PEELED

Dec

Hex

Monitor

Addr Addr Label

Description

64
65

66
67

$40
$41

842
$43

A3L
A3H

A4L,
A4H

A2L,H contains the port mumber in an input port
select or output port select (control K or P)
command .

Monitor routine NXTAl increments AlL,H by one and
then compares the result to A2L,H. If A2L,H is
less than AlL,H then Carry is set when control is
returned to the calling program.

Multipurpose Monitor work area:
May be clobbered by Instruction Trace in the 0ld
Monlitor; see XQT above.

AlL,H and A3L,H are both filled from A2L,H during
Monitor Command processing scan of the input line
as described above regarding AlL,H.

A3L,H is used as the destination pointer during
Monitor STORE command processing.

A3L,H is used as a work area by the Register
Display routine, which is called by the control-E
Monitor command, or as part of the single cycle or
trace operations of the 0ld Monitor.

Multipurpose Monitor work area:
May be clobbered by Instruction Trace in the 0ld
Monitor; see XQT above.

This field (and A5L,H) are loaded from A2L,H
during Monitor Command Processor scan of the input
area when a "<" character is encountered.

A4L,H is the receiving field pointer during a
Monitor MOVE command execution.

A4L,H is the second field pointer during a Monitor
VERIFY operation.

Monitor routine NXTA4 increments A4L,H by one, and
then drops into NXTAl, which increments AIL,H by
one and then compares the result to A2L,H. If
A2L,H is less than AlL,H then Carry is set when
control is returned to the calling program.

MEMORY ALLOCATION 141

Multipurpose Monitor work area:

This field is not within the bounds of the area of
XQT, which, in the 0ld Monitor, overlays AlL

This field is filled from A2L,H as described above
for A4L,H. However, the field is not otherwise
referenced within the Monitor, except that ACC
(below) is also ASH.

This five byte field is a register save area.
With the following exceptions, the 6502 registers
are stored by the SAVE routine and reloaded by the

S-reg is stored at SPNT by SAVE but is never

The A-reg is stored at ACC by the IRQ routine on
either an IRQ interrupt or execution of a BRK
instruction. On a BRK, entry into the SAVE
routine at label SAV] is used to store the rest
of the registers. The other registers are not
stored by the Monitor for an IRQ interrupt.

As described above, the registers are stored in
this area on execution of a BRK instruction.

After execution of a BRK instruction or on
execution of Monitor command control-E, the

contents of this area are used to display the
"registers" on the screen.

The registers (except S-reg) are loaded from this
area before jumping to the requested location on
execution of the Monitor G command.

In the 01d Monitor Step and Trace command
routines, the registers are stored here after each
instruction execution and reloaded before the next
traced instruction is executed.

Dec Hex Monitor
Addr Addr Label Description
68 $44 ASL
69 $45 ASH
through A4H.
NOTE
ASH = $45 = ACC
69 $45 ACC
780 $46 XREG
71 847 YREG
72 $48 STATUS RESTORE routine.
73§49 SPNT
reloaded.
74 84A unused
75 84B unused
76 $4C unused
77 $4D unused

12 MONITORS PEELED

Dec Hex Monitor
Addr Addr Label Description

78 S4E RNDL Random number field, 16 bits:

79 $4F RNDH This field is continually counted up by the KEYIN
routine while testing for key pressed. Thus, the
results are effectively random as it doesn’t take
long to overflow and start over. There is no other
reference to this field within the Monitor.

80 $50 ACL These three two-byte fields are used only by the
81 $51 ACH multiply and divide routines in the 0ld Monitor.
82 $52 XTNDL These routines are not called from any place in

83 $53 XTNDH the Monitor. Therefore, these fields are used
84 $54 AUXL only if a user program makes use of the multiply
85 $55 AUXH or divide routines.

The section on Data Manipulation Functions
contains a full description of the multiply and
divide routines.

PAGES ONE THROUGH THREE
PAGE ONE ($0100-01FF)

Page one is the hardware stack area. Monitor use of this area is
only by means of the 65@2 instructions which use the stack, such as
PHA, JSR, RTS, etc. The Monitor does not initialize or set the stack

pointer (S-register) on a RESET or Power On interrupt or at any other
time.

PAGE TWO ($0200-02FF)

Page two is the Keyboard Input buffer area. At label "GETLN" the
X-register is initialized as an index. At label ADDINP the character
read from the keyboard is stored into page two indexed by the
X-register. The result is that on return to the calling program the
characters read from the keyboard have been stored in memory locations
$@20¢ and up, the last character stored being a carriage return,

code $8D.

PAGE THREE (SG300-03FF)

Page three contains "vectors" for special handling of certain

interrupts at the high end of the page. The low end of the page,
through $@3CF, is often used for machine language subroutines.
From $@#3D# through $@3EF is used by DOS.

MEMORY ALLOCATION 13

PAGE THREE ADDRESS TABLE

Hex Dec Function

$P30@-SP3EF 768-1@%7 Not used by the Monitor.

$P3F@-$P3F1 1¢(8-1009 The Autostart Monitor uses this location as the
BRK instruction interrupt vector (address).

$P3F2-$¢3F3 1¢1¢-1011 This is the RESET (Soft Entry) Vector (address)
used by the Autostart Monitor, as described in

the section '"RESET Interrupt - Autostart
Monitor".

$P3F4 1412 Powered Up indicator: if the Exclusive OR of
"SA5" with the contents of $@3F3 is equal to

the contents of $@3F4 then the RESET (Soft

Entry) Vector is considered valid. Otherwise, a
RESET interrupt will cause the Autostart

Monitor to go through power—up initialization,
including boot of DOS if available.
$P3F5-~$03F7 1013-1¢)15 Reserved for APPLESOFT ("&" vector instruction).
$@3F8-S$P3FA 1¢16-1018 Control-Y Vector (instruction).
SP3FB~$P3FD 1¢19-121 Non-Maskable Interrupt Vector (imstruction).

$SP3FE-$P3FF 1022-1¢23 1IRQ Interrupt Vector (address).

PAGES FOUR THROUGH SEVEN & ELEVEN

Address range $@400 through $@7FF is the primary text and low

resolution graphics display area. That is, screen display hardware
displays on the screen the information stored in this part of memory.

Address $080¢ is generally the beginning of memory available to the
user for general program or data storage. However, $@8(¢¢ through $@BFF
is the secondary text and low resolution graphics display area. By
POKEing =16299 with any value, the screen display hardware can be
directed to display to the screen from this secondary display area
instead of the primary display area. POKE -16300,0 to switch back to
the primary display area.

Although the hardware will display to the screen from the secondary
display area, the Monitor does not support the feature. That is, the
BASCALC and GBASCALC routines in the Monitor convert the line number
input to the routine to the appropriate memory address for the primary
display area only. Use of the secondary display area is described in
the section "Secondary Display Areas".

Contiguous screen lines are not in contiguous memory locations. The
characters on a screen line are in the same sequence in memory as on

14 MONITORS PEELED

the screen, but the lines are mixed in a manner which simplifies the
hardware display to the screen. The following table indicates for each

line the address in memory for the leftmost character of the line in
both the primary and secondary display areas.

The BASCALC routine in the Monitor computes the memory address for the
line number input to that routine in the A-reg. Using the letters to
designate bit positions in the input line nunmber, the following
indicates the result of the computataion:

Input line number (A-reg) J@PABCDE
Memory address (BASH BASL) (¢¢@@1CD EABABP@Q

This can be arithmetically computed, using "modulo" arithmetic in

place of the ANDs and ORs of machine language. For line number
"L" (¢_ 23) 3

ADDR=1(J244256* ((1./2) MOD 4)+(128%(L MOD 2))+4@*((L/8)MOD 4)

SCREEN MEMORY ADDRESS TABLE

Line Primary Display Area Secondary Display Area

Decimal Hex Decimal Hex

) 1024 g400 2048 @8¢¢

1 1152 @480 2176 @88¢

2 128¢ 2500 2304 #9g¢

3 1408 @580 2432 #98¢

4 1536 @600 2560 gApg

5 1664 7680 2688 P#A8¢

6 1792 @700 2816 #BOG

7 192¢ @780 2944 @#B80

8 1964 #428 2088 #828

9 1192 g4A8 2216 #8A8

1¢ 132¢ @528 2344 #9238
11 1448 @548 2472 #9A8
12 1576 ¥628 2600 PA28
13 17¢4 P#6A8 2728 PAAS
14 1832 @728 2856 ¥B28
15 196¢ @7A8 2984 @BAS8
16 1194 @450 2128 #85¢
17 1232 @g4ang 2256 @8ng
18 1360 @#550 2384 #95¢
19 1488 @#5D¢ 2512 @opg
20 1616 #65¢ 2640 PASE
21 1744 @609 2768 @ADY
22 1872 @750 2896 @#B5¢
23 2009 @¢7D¢ 3¢24 @#BDY

It is also interesting to note that although 24 lines of 4@ characters
conputes to 96¢) bytes, the memory area described above contains 1¢24
bytes per display area. The significance is that some of the bytes in

MEMORY ALLOCATION 15

pages four through seven are not displayed on the screen. These bytes
are eight groups of eight bytes each. This space has been set aside or
allocated for use by peripheral controller cards in slots one through
seven. The following table shows the allocation.

Misuse of these locations can be easily accomplished, with potentially
serious results. Note that if an image of the screen is generated
elsewhere and moved to this area in a block, the locations identified
below will be modified. If a program is loaded from tape with the
Monitor command mmmm.nnnnR, and if mmmm is less than $@40@, then the
bytes in the following table will be loaded from the tape. If an
attempt is made to save the screen area to disk and later BLOAD it to
the screen area, results can be confusing. The Disk Controller card,
and possibly some peripheral device interface cards keep control

information in these areas. For example, doing the above mentioned
BLOAD from drive 2 when the BSAVE had been done from drive 1 will
result in the disk switching back to drive 1.

The Reference Manual indicates that one must be sure that Scroll
Window definition fields WNDLFT and WNDWDTH must not add up to more
than 4@. Violation of the bytes in the following table will be the
unfortunate result if this caution is not observed.

PERIPHERAL CONTROLLER WORK AREAS

Common Slot Slot Slot Slot Slot Slot Slot
(any/all) 1 2 3 4 5 6 7
Decimal Hex

1144 @478 Q479 @G4T7A G4TB @g4a7c @47D @4TE B4T7F
1272 @Q4F8 (@4F9 (@4FA @4LFB (P4FC (4FD (LFE (AFF
149¢ @578 @579 @¢57A @57B @57¢ @57D @G57E @57F
1528 (@S5F8 (@5F9 (5FA @5FB @S5FC @5FD (SFE @5FF
1656 g678 (@679 g67A @67B @g67cC #67D @67E g67F
1784 @6F8 (6F9 @G6FA (@6FB (6FC (6FD @6FE (6FF
1912 @778 @779 @77A @778 @77C @77D @GI7E Q7TF
204¢* @7F8* @7F9 (@IFA @7FB @7FC @7FD @7FE QTFF

* Location 2848 ($@7F8) has special significance. This location should
be loaded with $CN, where N is the slot number of the active
peripheral, whenever an interrupt may occur and the ROM/PROM expansion
scheme is in use. This is necessary so that the return from interrupt
software used allows the proper peripheral card to resume operation.

16 MONITORS PEELED

CHAPTER 2

INPUT AND OUTPUT

The default operation of the screen is as a scrolling device: new data
is entered or output at the bottom of the screen and all above is
shifted up line by line until the oldest information disappears off

the top of the screen. With a little extra work in the user program,
it is also possible to use the screen as a formatted display.

Following is a description of the effects of that type of use, and
some suggested solutions to the situations encountered.

Characters generated by the user program for display on the screen are
handed to the Monitor one character at a time. The screen output
handlers check for control character vs. display character, and operate
in accordance with what they find. For example, output of a carriage
return character or line feed character while the cursor is on the
bottom line of the screen will cause a scroll operation to take place.
If the screen is being used with a format instead of as a scroll
device, then the program can easily avoid output of a carriage return
or line feed when the cursor is on the bottom line of the screen.

The easiest way for the user program to read information from the
keyboard is to call the Monitor at the point where it will read in a
line (up to a carriage return) before returning control to the calling
program. When this is done, the input information is always available
at the same place in memory. There is, however, a conflict between
using this type of a call and using the screen as a format type
display. While the Monitor is receiving the keyboard input, it
"echoes" the characters to the screen at the current cursor location.
When end of input is signaled by a carriage return, the Monitor clears
the cursor current line from cursor to the right end of the line
(within the Scroll Window). Thus, the user program must make sure that
before asking for input from the keyboard the cursor is placed where
there is no significant data to the right.

It is possible to divide the screen into scroll area and non-scroll
area. Many complications arise from this method of operation, so the

recommended solution to the format display problem is to leave the
screen full scroll and avoid scroll services when they are not
desirable.

The entry points and qualifiers for using scroll and non-scroll areas
will be found in the section on Text Output Without the Scroll Window.

KEYBOARD INPUT DIVISION OF LABOR

The Monitor routines supporting keyboard input are designed to echo
the keyboard input to the screen (through COUT) at the current cursor
position, and store the entered characters in the keyboard input area
($02¢¢ $02FF) for the convenience of the calling program. The
executing program may position the cursor anywhere (in the Scroll
Window) before calling the Monitor keyboard input routines. On entry
of a carriage return from the keyboard, the Monitor keyboard input

KEYBOARD INPUT AND SCREEN OUTPUT 17

routines will cause return of control back to the calling program with
the character count plus one in the X-register and a carriage return
in the input area as a terminator. The program need not look into the
screen refresh memory to determine what was entered. (Note: The X-
Register begins with a zero, so that if five characters are entered,

the X-Register will reflect 4, although the actual value returned
will be 5. X is incremented for the carriage return as well.

The routines described below are included in the address table. The
following section, "User Program Calls ...", describes program setups

for calling some of these entry points. Hex address, + Decimal

address, and - Decimal address are given in brackets beneath each
routine.

TABLE OF ROUTINES

Routine Description

GETLNZ Entry at this point causes output of a carriage return
[$FD67] (through COUT) before going to GETLN to write the prompt

[64871] character and read the data.
[- 665]

GETLN Entry at this point is with the cursor properly positioned
[$FD6A] (CV, BASL,H, and CH) as described in the section regarding
[64874] Text Output Within the Scroll Window.
[- 662]
GETLN prints the prompt character and initializes X-reg for
indexed storage of the input characters into the input area.
Control then goes to NXTCHAR.

NXTCHAR This is the top point in the character input loop. RDCHAR

[$FD75] is called to get a character into the A-reg. On return the

[64885] A-reg is tested for presence of the control-U (right arrow on

[- 651] the keyboard) and if it is found, the A-reg is then loaded
from the screen refresh memory ((BASL),Y), assuming that the
Y-reg contains the same value as CH.

If the A-reg value is $Ef or greater, the lower case letter
is converted to upper case by AND with $DF. The character is
then stored from the A-reg to the input area.

If the character is a carriage return, CLREOL is called to
clear to blanks the rest of the window line, and then a
conditional branch transfers control to COUT so that the RTS
exit of COUT will return control to the calling program with
the X-reg indicating the input character count +l. That is,
the input is in memory locations $@2¢@ through $@20¢,X where
$020¢,X contains the carriage return.

If the character is not a carriage return, then control is
transferred to the NOTCR routine for display on the output
device, and for interpretation with regards to control
character affecting the input line.

18 MONITORS PEELED

Routine

Description

NOTCR

[$FD3D]
[64829]
[- 7¢7]

NOTCR1
[$FD5F]
[64863]
[- 673]

CANCEL
[sFD62]
[64866]
[- 67¢]

BCKSPC
[$FD71]
[64881]
[- 655]

RDCHAR
[$FD35]
[64821]
[- 715]

This routine receives control with the character of interest
in (IN,X). The current setting of INVFLG is saved on the
stack, while INVFLG is set to $FF so that the character
"ochoed" to the screen will be white on black. COUT is then
called with the character in the A-reg.

On return from COUT, INVFLG is restored from the stack. The
character at IN,X is then tested for either of two special
keys: Backspace (left arrow) or (line) Cancel (control-X).
If Backspace, go to BCKSPC. If Cancel, go to CANCEL.

If (IN,X) is neither Backspace nor Cancel the value of X-reg
is tested to determine whether the input area is full or
almost full. If there are more than 247 characters in the
input area, a call to BELL is used to signal to the operator
that the area is almost full.

After or without the margin warning bell, this routine gets
control. Here, the X-reg is incremented to point at the
next location in the input area to be filled. If, however,
the result is overflow to zero, then entry of the Cancel key
is simulated by falling into CANCEL. In the normal case,
after incrementing the X-reg, control goes back to NXTCHAR
to continue with character input and line building.

This routine prints a back-slash through COUT to indicate
the action taken to the operator. Control is then passed to

GETLNZ to initialize for entry of a new input line — the old
one is gone.

On entry to this routine, the backspace character has

already been printed through COUT with resulting backward
movement of the cursor. If the current value in X-reg is
zero, control is transferred back to GETLNZ for printing
prompt and re-initializing for line input. Otherwise, the X-
reg is decremented with control going to NXTCHAR to resume
input of characters.

This routine calls RDKEY to get the next character placed
into the A-reg. If, on return, it is found that the Escape
key has been pressed, this routine calls the appropriate
routine for reading the next character and performing the
requested Escape key function. In the Old Monitor, control
is passed to the ESCl routine for this purpose, after a JSR
to RDKEY to read the next character. In the Autostart
Monitor, detection at RDCHAR of an Escape character transfers
control (via ESC including RDKEY) to ESCNEW, which has the
capability of handling multiple escape functions after a
single depression of the Escape key.

After any requested escape functions have been performed,

control returns to RDCHAR as if there had been no
interruption.

KEYBOARD INPUT AND SCREEN OUTPUT 19

Routine

Description

RDKEY
[$FD@C]
[64780]
[~ 756]

KEYIN

[$FD1B]
[64795]

[- 741]

ESC
[$FD2F]
[64815]
[- 721]

ESCNEW

[$FBAS]
[64421]
[-1115]

This routine picks up and saves in the A-reg the character
from the screen refresh memory area at BASL,H,CH (leaving
the Y-reg filled with the contents of CH). It then changes
that character in memory to blinking to indicate current
cursor position.

This routine asks for the next input character to be placed
in the A-reg by doing an indirect jump via KSWL,H, which is
normally pointing at KEYIN. Return 1Is therefore to the
caller of RDKEY, not to the RDKEY routine itself.

This is the routine which gets the next input key from the

keyboard hardware. There are two required actions and two
extra actions taken by this routine. The required actions

are reading the keyboard input buffer over and over again
until it is determined (by presence of the $8@ bit) that a
character has indeed been read. In this case, keyboard input
buffer refers to the $1¢¢ byte buffer at $2¢¢, and not to
the location at $C@@@. The sign flag is set or not by
checking the status of the value at $CPPP. If that value is
positive, the routine loops back to KEYIN. If that value is
negative, the value of $CP@@ is picked up and the keyboard
strobe is referenced to prepare for the next keyboard input.

The auxiliary actions taken by this routine are first, to
count up the random number field, ignoring overflow, and
second, to restore to the screen area the character modified
by the RDKEY routine to remove the blink. This restore is
accomplished by storing the A-reg at (BASL),Y, assuming that
RDKEY loaded it. This is accomplished before the keyboard
register is read into the A-reg.

Return to the caller (of RDKEY) is accomplished by an RTS.

This routine is entered from RDCHAR if the A-reg is found to
contain the Escape key code. It reloads the A-reg with a new
key by calling RDKEY. In the 0ld Monitor, it then calls ESCl
to perform the requested single function. In the Autostart
Monitor, ESCNEW is called to perform the requested functions.
In either case,. ESC is positiomed such that the RTS which
terminates Escape key processing returns control to RDCHAR.

This routine exists only in the Autostart Monitor. It is
the routine which supports cursor movement without data
transfer; the Escape key functions I, J, K, and M. If the
key next pressed is one of these four, the appropriate 'old"
function (Escape functions C, B, A, and D, respectively) is
called. On return to ESCNEW, RDKEY is again called to get
(and operate upon) the next character from the keyboard.

20 MONITORS PEELED

Routine Description

If the key pressed is not I, J, K, or M, then ESCI is
entered by JMP instead of JSR so that the RTS will return to
the caller of ESCNEW instead of to ESCNEW.

ESC1 In the 01d Monitor this routine is called by the RDCHAR
[src2c] routine if the Escape key code is found in the A-reg by that

[64556] routine. In the Autostart Monitor, control is passed in this
[- 980] case to the ESCNEW routine which then calls ESCl or jumps to

it depending on which key is pressed next.

ESCNEW translates I, J, K, or M to C, B, A, or D
respectively before calling ESCl, which returns to ESCNEW.

If the key is other than I, J, K, or M, then ESCNEW JMP’s to
ESCI with Carry set, to have the appropriate function

performed. In this case, the next RTS will return control
to the RDCHAR routine.

When ESC1 is called, the contents of the A-reg (and the
condition that Carry is ''set") indicate the action to be
taken. Control is transferred (conditional branch) to the
appropriate Scroll Window Service routine to move the cursor
without transferring data, or to clear all or some of the
screen, or some combination of these.

CALLS TO KEYBOARD INPUT ROUTINES

The following paragraphs describe how to set up for calls to the

various entry points in the Monitor for keyboard input, and what the
results will be.

TABLE OF KEYBOARD INPUT CALLS

Routine Description of Set-Up

GETLNZ Write carriage return and prompt character, then read a line.

Set-Up:
X-reg, Y-reg, and A-reg are insignificant.
CH is insignificant.
CV should point to the line in the Scroll Window where
input is to begin.
BASL,H is insignificant.

Results:
CR is written, scroll takes place if appropriate.
Prompt character is written through COUT.

Keyboard is read character by character. Each character
is placed at $02¢@,X and X is then incremented.

KEYBOARD INPUT AND SCREEN OUTPUT 21

Routine Description

Each character is "echoed" to the screen at cursor
position and the cursor is then advanced.

On reading a carriage return, control is returned to
calling program.

On Return:
A-reg contains a carriage return code ($8D).
X~-reg contains the number of characters read before
carriage return.
Y-reg contains contents of WNDWDTH.
Location $@2¢@,X contains a carriage return.
CH contains zero.

CV contains line number, current value.
BASL,H contains memory address for CV, WNDLFT.

Window line is blank to the right of the end of the
echoed input.

GETLN Write prompt character, then read a line.

Set-Up:

X-reg, Y-reg, and A-reg are insignificant.

CV and BASL,H should be compatible, pointing in the Scroll

Window.

CH indicates where on that line the prompt character is to
be placed, to be followed by the echoed key inpute.

Line address at which input is to begin must be in
BASL,H. The Line number in CV will be calculated and
set in BASL,H after a carriage return has been entered.

Results:
Same as above for GETLNZ, with noted exception.

On Return:
Same as above for GETLNZ.

NXTCHAR Enter here to bypass print of prompt character to the screen.

Set~Up:
X-reg should be zero to begin storing input at $@200.
Y-reg and A-reg are insignificant.
CV and BASL,H should be compatible, pointing in the Window.
CH indicates where echoing of keyboard input is to start.

Results:
Same as above for GETLN,

On Return:
Same as above for GETLNZ.

Note: For all the above, Escape key functions are supported as
described in the reference material for the Monitor you have installed.
Also, control-U (right arrow) is supported. When that character is
recognized in the keyboard buffer, it is replaced in the A-register by
the contents of the screen memory at the current cursor position.

22 MONITORS PEELED

Routine Description

RDCHAR Read single character thru KSWL: return to caller in A-reg.

Set~-Up:

X-reg is insignificant, and will not be clobbered.

Y-reg is insignificant.

A-reg is insignificant.

CV and BASL,H should be compatible, pointing in the
Scroll Window to the line where input is to begin.

CH indicates the horizontal position in the Scroll Window
where cursor position will be indicated by blinking.

Results:

The screen character at the cursor position (BASL),(CH)
will be set to blinking until a key is pressed.

If the Escape key is detected, the appropriate routines
will be called to handle the requested function.

Cursor right arrow (control-U) will be returned to the
calling program, not the contents of the screen at the
Cursor.

Cursor left arrow key (control-H) will be returned to the
calling program.

Characters read from the keyboard will not be stored in
the $020¢ area.

After the character is read, the blink will be turned off
at the cursor position, but the key just read will not
be echoed to the screen, nor will the cursor (CH) be
advanced.

Cancel input line (control-X) service 1is not defined
as the data is not being stored in the $@20¢ area.

No special note is taken of carriage return, because the
rest of the Monitor KEYIN Routine is not called. It is
up to the calling program to take appropriate action on
entry of a carriage return.

On Return:
A-reg contains the value of the key pressed.
Y-reg contains the contents of CH.
X-reg is not affected by the routines called.
CV, CH, BASL,H will have changed only if an Escape key
function has been utilized.

RDKEY Read single character thru KSWL: return to caller in A-reg.

Set-Up:
X~-reg, Y-reg, and A-reg are insignificant.
CV and BASL,H should be compatible, pointing in the
Scroll Window.

CH indicates the horizontal position where the cursor will
be shown by blinking.

KEYBOARD INPUT AND SCREEN OUTPUT 23

Routine Description

Results:
The character on the screen at the cursor position is set
to blinking.
KEYIN routine is given control via (KSWL) for physical
reading of the keyboard.
Return (RTS) in KEYIN returns to the caller of RDKEY, not
to the RDKEY routine.

On Return:

A-reg contains the character from the keyboard. It may
be any character, including Escape, carriage return,
right or left arrow, or any other control character.

X-reg 1s unchanged from the call.

Y-reg contains the contents of CH.

The character in the screen area at the cursor position
has heen restored to whatever it was before it was set
to blink hy RDKEY.

CV 18 used to. calculate the new line,

BASL,H reflects the recalculated address.

CV remains unchanged.

KEYIN Read single character from keyhoard: return to caller in A-reg.

Set=Up:

X-reg is unused and unaffected across this routine.

A-reg input to this routine is what will be stored into
the screen area at the cursor position (BASL),Y to
remove the blink condition after a key is pressed.

Y-reg is set to be used to store the A-reg into -the screen
area to remove the hlink at (BASL),Y.

CH and CV are not referenced, but should be appropriately
set. BASL,H are used as described for A-reg and Y-reg
above.

Results:

On return to the caller, only the A-reg has been changed.
It contains the input from the keyboard register.

KEYIN ROUTINE REPLACEMENT

There are cases in which it is desirable to replace the physical
keyboard input routine with a routine which either reads from the
keyboard and preprocesses the input, or gets the information to feed
to the reading program from some source other than the keyboard. The
requirements of such a program in replacing the KEYIN routine are
described below. Placing the program/routine into effect is

accomplished by storing the entry point in KSWL,H.

24 MONITORS PEELED

The replacement routine should manage the following resources as
indicated.

A-reg Store the A-reg at (BASL),Y, then load the A-reg from
whatever source is to be used.

X-reg Must be unaltered. Save on entry and restore on exit if
it must be used by the replacement routine.

Y-reg Use as indicated above for A-reg.

It must not be changed on return from contents on entry,
so save and restore if it must be used otherwise. (This
caution is not required, however, if the source of the
input prevents Escape key and right arrow from being
entered. In such case, the Y-reg is expendable.)

cH These are all used for echoing the "keyboard" input,
cv so the replacement routine should either leave them

BASL,H alone or manipulate them in an appropriate manner.

NOTE: On replacing the pointer to KEYIN at KSWL,H, it is generally
safer to pick up and store the current contents of KSWL,H in a

save area before placing the address of your routime, and then
restore KSWL,H from that save area when taking the replacement

routine out of service.

NOTE: If you replace the contents of KSWL,H with the address of your
routine while using DOS, expect the unexpected. DOS uses both

CSWL,H and KSWL,H, and periodically restores them to appear the
way DOS likes to see them regardless of current contents.

Depending upon your application, it may be a good idea to

replace both pointers on a temporary basis so that echo to the
screen will not pass through DOS. But remember to repair both as

soon as possible.

KEYBOARD INPUT MONITOR ROUTINE

There are many points in Keyboard Service which a user program could
usefully call. However, because they are generally different locations
in a continuous string of instructions, and all instructions after the
point of entry will be used, sections of this table of addresses are in
Monitor sequence rather than in sequence by potential usability.

Note that once the Monitor is jumped to at the specified point, all of
the initialization described after that entry point is also performed.
This is implied by the & at the end of each function description.

KEYBOARD INPUT AND SCREEN OUTPUT 25

ADDRESS TABLE 1—CHARACTER INPUT

Function Hex
Addr

+Dec
Addr

=Dec Monitor

Addr

Label

Registers
Destroyed

BOTH MONITORS

Call RDKEY to get next character FD35.

into A-reg.

Compare to $9B (Escape).
If = BR to ESC to call for next
character and do Escape function.
Else, RTS.

Set screen to blink at cursor FD@C
saving original character in the

A-reg from (BASL),Y &

Jump Indirect (KSWL) to KEYIN FD18

Increment random number at RNDL,H FDIB
while polling keyboard register.

Store A-reg to (BASL),Y (clear FD26
blink set by RDKEY routine). &

Load A-reg from keyboard register FD28
and clear keyboard strobe and RTS.

Using character in A-reg, with FC2C
Carry set, BR to routine for
Escape key service.

@ HOME clear scroll window

A ADVANCE cursor right

B BS cursor left

C LF cursor down one line
D UP cursor up one line

E CLREOL clear to end of line
F CLREOP clr to end of window
other ignore: RTS

Set port ¢ (keyboard) for input. FE89

64821

64780

64792
64795
64806
64808

64556

65161

=715

=756

-744
-741
-73¢

-728

-98¢

~-375

RDCHAR

RDKEY

KEYIN

ESC1

SETKBD

AY

OLD MONITOR ONLY

Call RDKEY for Escape key service & FD2F
Call ESCl with character in A-reg FD32
and Carry set to do indicated

function. Return is to RDCHAR.

64815
64818

-721
-718

ESC

AUTOSTART MONITOR ONLY

Call RDKEY for Escape key service & FD2F
Call ESCNEW with character in A-reg FD32
and Carry set to do indicated
function. Return from Escape
processing is to RDCHAR (above).

26 MONITORS PEELED

64815
64818

-721
-718

ESC

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Set Carry flag and JMP to ESCl FB97 644¢7 -1129 ESCOLD A,Y
to handle Escape key functions
A, B, C, D, E, F.

Handle Escape key functions FB9B 64411 -1125 ESCNOW A,Y
I, J, K, M. Translate to

D, B, A, C and call ESCOLD.

Then RDKEY to get next character

and drop into ESCNEW to continue

Escape key processing.

Escape key processing entry point. FBA5 64421 -1115 ESCNEW A,Y
If A-reg contains I, J, K, or M

then go to ESCNOW to tramslate

and handle it with return to

ESCNEW. Otherwise go to ESCOLD

to handle this entry and exit

from Escape mode.

BASL,H 441 $28-$29
KSWL,H 56-57 $38-$39

ADDRESS TABLE 2—LINE INPUT

Logically speaking, the place to start below is GETLNZ, but the
sequence of presentation here is the sequence of instructions in the
Monitor because of heavy use of "fall into" next code segment.

Note that once the Monitor is jumped to at the specified point, all of
the initialization described after that entry point is also performed.
This is implied by the & at the end of each function description.

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Echo keyboard input thru COUT to FD3D 64829 =-7¢7 NOTCR A
the screen, from IN,X, with
INVFLG temporarily set to $FF. &
Pick up character from IN,X; FD4D 64845 ~691 A
if $88 goto BCKSPC.
if $98 goto CANCEL.
if X-reg (input index) greater
than $F7 fall into FD5C.
Else goto NOTCR1l, bypass Bell.

Sound bell if X indicates 248+ FD5C 64860 =676
input characters. &
Increment X-reg; FDSF 64863 =-673 NOTCR1 X

If X not zero goto NXTCHAR.
If X=¢ fall into CANCEL.

KEYBOARD INPUT AND SCREEN OUTPUT 27

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Load $DC (\) into A-reg. FD62 64866 —~67¢ CANCEL A,X,Y
Backward slash indicates line
input cancelled.

Call COUT to print A-reg. FD64 64868 -668
Then fall into GETLNZ.

Print carriage return thru COUT.

Load PROMPT into A-reg. FD6A 64874 =662 GETLN

Call COUT to print A-reg. FD6C 64876 —660

Load X~reg with $#1 for passage FD6F 64879 =657 A,X
thru backspace operation.

If X=@ goto GETLNZ to start over. FD71 64881 -655 BCKSPC A,X,Y
Else, decrement X-reg and
fall into NXTCHAR.

Call RDCHAR to get next character. FD75 64885 =651 NXTCHAR A
If character received is ctrl-U
(%95, right arrow) pick up the
screen character from (BASL),Y

g

FD67 64871 -665 GETLNZ A,
A,

R R

to replace it in the A-reg. &

If A-reg greater than $DF, then FD7E 64894 =642 CAPTST ?A
AND against $DF to make it

upper case. &

Store A-reg to input area at IN,X. FD84 64930 -636 ADDINP
Compare to carriage return.

Goto NOTCR (above) if not.

Else, call CLREOL to clear the

rest of the line, then print
carriage return thru COUT,

using RTS from that function to

accomplish return to caller of
keyboard input.

IN =$@20@, keyboard input area.
INVFLG is at $32 (5@).

OVERVIEW—TEXT OUTPUT TO THE SCREEN

The highest level of support in the Monitor for text output to the
screen is scroll device support. In addition, the Monitor contains
many components which support use of the screen in a formatted manner.
Because there are so many ways to write text to the screen, the topic
of screen output has been divided into the following sections:

TEXT OUTPUT WITHIN THE SCROLL WINDOW
describes the normal manner of text output, defining the fields in

page zero which are used to control this function, and which are
used in the descriptions in the following sections.

28 MONITORS PEELED

SCREEN FORMAT CONTROL
identifies the entry points by means of which display operation

(full text, full graphics, mixed LORES graphics and text), Scroll
Window setup, and character display mode (black on white or white

on black or blinking) are established or modified.

SCROLL WINDOW DATA MANIPULATIONS
describes Monitor calls which clear all or part of the Scroll

Window, set parts of the window to some user specified value, or
cause conditional or unconditional scrolling of the window.

CURSOR POSITION CONTROL
describes the ways and means of moving the cursor relative to its

current position, or moving it to some location independent of its
current position.

GENERAL TEXT TO THE SCREEN
describes the Monitor entry points to output user program
generated data to the screen or to the current output device if
CSWL has been modified. Also, entry points are described to
transmit standard types of output (blanks, bell code, carriage
return) to the output device (generally screen).

TEXT OUTPUT WITHOUT THE SCROLL WINDOW
describes the entry points used for placing characters on the
screen outside of the Scroll Window, and for reading the keyboard
when echo to the Scroll Window is to be performed.

SECONDARY DISPLAY AREAS
describes various ways of using the Secondary Text area, even for
limited Scroll Window functions such as allowing keyboard input
echo to go to the Secondary area.

Any entry point which fits into more than one category will be found
in each appropriate address table.

OUTPUT WITHIN THE SCROLL WINDOW

Scroll Window operation is compatible with printer or typewriter

output in that new characters are displayed to the right of previous
output, and new lines are displayed below previous lines. It is this
mode of operation which is described in this section. That is, this
section describes "printing'" information by means of the CSWL vector
to the screen or to a printer type device. The section on General Text
to the Screen describes use of the screen, bypassing the CSWL vector
and making direct use of the Scroll Window output routines.

The normal method provided in the Apple II for displaying output

information is by "calling" COUT with the character in the A-reg for
each displayable character or format control character (such as a

carriage return). At COUT, a JuMP Indirect is done via the CSWL vector
to the routine which will place the character on the selected medium

KEYBOARD INPUT AND SCREEN OUTPUT 29

or accomplish the indicated control function. When the system is
initialized, this vector is set to point to COUT1 which supports

Scroll Window output to the screen. If the user sets a different
output device (by PR#n in BASIC or ctrl-P in Monitor mode), then the

CSWL vector will be set to pass the output bytes to the selected
peripheral controller card instead of to the screen. Depending on
which peripheral controller card, and which controls are active, the
program on that card may place the character on the output device, and
then JuMP to COUT1 to write it also to the Scroll Window.

The normal mode of text output to the screen is in "scroll" mode. In
this mode, new information is written to the bottom line of the

screen, and the contents of the screen are moved up, up, and away as
required to allow entry of new information below the old. This mode of
output is used in APPLESOFT or BASIC "PRINT" statements. This is the
mode of output used by any Monitor command which displays data to the
screen.

As new characters are written to the screen, they are placed at the
position of the cursor. The cursor position is a location on the
screen (and in screen refresh memory) specified by the contents of
certain fields in page zero. Also, the Scroll Window is a portion (or
all) of the screen as defined by the contents of certain fields in
page zero. There is no special display hardware involved with the
scrolling function. Routines in the Monitor move data in the screen
refresh memory as required to support the scrolling function.

The fields in page zero describing the Scroll Window indicate the left
column and width, and the top and bottom lines, as described here.

The cursor position is defined in various fields, and unless a user
progran interferes they will be compatible.

The screen line number of cursor position is contained in the field
CV. CV indicates the line number of the cursor relative to the top
line of the screen, not the Scroll Window. (Note that this is
different from CH, described below.) The screen refresh memory
location which corresponds to this line number is maintained in the
two byte field (BASL,H). Note, however, that if the left edge of the
Scroll Window is not the leftmost character of the screen, BASL,H will
have been ad justed to point to the leftmost character position on that
line within the Scroll Window. Thus, a program may interrogate CV to
determine the line number of the cursor, but the program cannot just
POKE a different line number into CV to move the cursor as BASL,H must
be updated as well,

The horizontal position of the cursor is maintained in CH. The value in
CH is relative to the left edge of the Scroll Window, not necessarily

to the screen. When a character is being "written" or "printed" to the
screen, the routine which places the character in screen refresh memory
uses the Y-reg for horizontal position, in the assumption that it has
been loaded from CH. In the address table, each description indicates
whether the routine being called uses CH or the Y-reg.

30 MONITORS PEELED

For machine language programs, Scroll Window output is most easily
accomplished by a JSR to COUT at $FDED (-531) with the byte in the A-
reg. From BASIC the same thing is accomplished by PRINTing a variable
in which the byte has been stored. 1In BASIC, of course, a whole string
can be written with a single command.

As the characters are passed through COUT1, they are modified, if
necessary, to be written in white on black, black on white, or
flashing, in accordance with the contents of the field called INVFLG.
This field can be set (POKEd) at any time, and is immediately
effective on all future characters printed by the program until it is
again modified. This function only applies to program print output.
During keyboard entry, INVFLG is temporarily changed to $FF as each
input character is echoed through COUT. '

The two byte field BAS2L,H is described below although it is rather
useless for user program reference. It is a work area used only
during a scroll operation.

PAGE ZERO FIELDS

Dec Hex Routine Description

32 $2¢0 WNDLFT Left column of the Scroll Window:
Range is ¢ to 39 (§27).
This field is used only in VTABZ. The contents,
when changed by user program, become effective on
the next scroll operation, clear to end of page
operation, or carriage return output. CH contains
cursor horizontal position relative to (WNDLFT).

After changing the contents of WNDLFT, either CALL
VTAB or output a carriage return to make it take
effect.

33 $21 WNDWDTH Width of the Scroll Window:
Range is 1 to 4¢-(WNDLFT).
When a character 1is written through COUT to the
screen it is placed at (BASL),(CH), after which CH
is incremented. At that time (CH) is compared with
(WNDWDTH) to determine whether the cursor has
exceeded the right margin of the Scroll Window.

34 $22 WNDTOP Top line of the Scroll Window:
Range is ¢ to 22 (316) for full text screen.
Range is 20 to 22 ($14 to $16) for mixed graphics
and text. This field is used during a scroll
operation to indicate where the operation should
starte.

KEYBOARD INPUT AND SCREEN OUTPUT 31

Dec Hex Routine Description

35 $23 WNDBTM Bottom line of Scroll Window +1:
Range is (WNDTOP)+1 to 24 ($18).
WNDBTM indicates the first line number below the
window. Contents of WNDBTM are tested only on
output of a carriage return ($8D) or line feed
(38A). It is used by Clear to End of Page and by
Scroll routines.

36 $24 CH Displacement from WNDLFT where next character to
the screen will be placed:
Range is ¢ to (WNDWDTH)-1.
After the screen output routine STOADV places a
character into the screen area as part of normal
character output, CH is then incremented and
compared to WNDWDTH., If CH is not low then a
carriage return will be simulated.

Note that CH is used for echoing keyboard input to

the screen by the Monitor routines GETLN etc.,
because COUT is used.

37 8§25 cv Vertical screen position (line number) for next
character to be written to the screen:
Range is @ to 23 ($17).
The content of CV is relative to the top of the
screen, not to the top of the Scroll Window. It
may be set by loading the desired line number into
A-reg and calling TABV. It may be set by POKEing
the line number into CV and then calling VTAB.
Actual storage of a character into the screen area
includes use of BASL,H for line number, not CV.
The calls above to VTAB or TABV are to set BASL,H
from CV for immediate future reference.

1If CV is at or below WNDBTM, it will remain on
current line as carriage returns go by while the

contents of the Scroll Window will be scrolled for

each.
4g $28 BASL This two byte field is the memory address for the
41 $29 BASH left end character position of the current text

line, within the Scroll Window. The contents are a
function of CV and WNDLFT.

This field is set by the BASCALC routine to point
to the memory address for the left end of the line
specified in the A-reg. This call to BASCALC is
usually accomplished by the VTAB routine, which
then adds (WNDLFT) to BASL,H to point to the left
end of the line within the window.

32 MONITORS PEELED

Dec

42
43

5¢

53

54
55

Hex

$2A
$2B

$32

$35

$36
$37

Routine

Description

BAS2L
BAS2H

INVFLG

YSAV]

CSWL
CSHW

This two byte field is used as a work area only
during a scroll operation. It is the destination
line pointer used as each line is moved to the
position above current.

This byte is a mask used by COUT1 to cause
characters written to the screen area to display
white on black (INVFLG=$FF) or black on white
(INVFLG=$3F) or flashing (INVFLG=$7F). This field
is set to $FF when a RESET occurs by the routine
at SETNORM. The routine called SETINV can be
called to set reverse video. The Monitor does mnot
set flashing.

Note: INVFLG=$7F does not cause all characters to
flash: the upper Z bits of the character must be
Pl for flashing to occur.

This byte is a save area for the Y-reg across a
call to the screen output routines. Y-reg is saved
and restored in the COUT1 routine.

This two byte field contains the address of the
routine which is to receive and dispose of output

characters. When the RESET key is pressed, this
field is initialized to point to COUT1 to send

output characters to the screen. Entering a
Monitor Command nPc (n=port number, Pc=control-P)
will cause the Monitor to set CSWL,H to Cn@@. The
routine at that location will then receive (in the
A-reg) each byte "written" through COUT, which is
a JMP (CSWL).

If the Monitor Command "@Pc" is executed, CSWL,H
is set to point to COUT1 instead of to C{¢Q@.

SCROLL WINDOW OUTPUT ROUTINES

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroyed
Jump via CSWL, character print. FDED 65005 =531 COUT none

drite byte in A-reg to screen at FDFY 65¢¢8 -528 COUT1 none
cursor (CV),(CH) using INVFLG and

supporting cursor move.

drite byte in A-reg to screen at FDF6 65@14 =522 COUTZ none
(CV),(CH) with cursor move but

not INVFLG.

KEYBOARD INPUT AND SCREEN OUTPUT 33

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Print carriage return thru COUL. FDBE 64910 -626 CROUT A

Print thru COUT "ERR" and bell code.FF2D 65325 =211 PRERR A
Print bell code ($87) thru COUT. FF3A 65338 -198 BELL A
Set BASL,H from CV (and WNDLFT). FC22 64546 ~-99¢ VTAB A
Set BASL,H from (A) and WNDLFT FC24 64548 -988 VTABZ A
without regard to CV,

Set BASL,H to left end of screen FBC1 64449 -1¢87 BASCALC A

line (not window line) in A-reg.

cH 36 $24 WNDLFT 32 $2¢

cv 37 $25 WNDWDTH 33 521

GBASL,H 38-39 $26-27 WNDTOP 34 $22

BASL,H 40-41 §28-29 WNDBTM 35 $23

INVFLG 5¢ $32

SCREEN FORMAT CONTROL BY ROUTINE

This table identifies the places in the Monitor which control the
display mode of operation and the Scroll Window configuration.

Function Hex. +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Clear HIRES graphics mode. & FB33 64397 -1229 A
Set display area primary. & TFB36 64314 -1226 A
Set TEXT mode. & FB39 64313 ~=1223 SETTXT A
Load ¢ into A-reg for WNDTOP, & FB3C 64316 -122¢ A
branch to SETWND below.
Set Graphics mode. & FB4Y 6432¢ =-1216 SETGR A,Y
Set mixed graphics/text mode. & TFB43 64323 -1213 A, Y
Call CLRTOP to clear graphics. & FB46 64326 -121¢ A,Y
Load 2¢ ($14) into A-reg for set & FB49 64329 -12¢7 A
of WNDTOP. Fall into SETWND.
Set top line of window (WNDTOP) FB4B 64331 =125 SETWND A
from A-reg, @ or 200 or user set.
Fall thru following.
Load A-reg with ¢ for WNDLFT. & FB4D 64333 -12¢3 A
Store A-reg to WNDLFT. & FB4F 64335 -1201 A
Load A-reg with 4§ for WNDWDTH. & FB51 64337 -1199 A
Store A-reg to WNDWDTH. & FB53 64339 -1197 A
Load A-reg with 24 for WNDBTM. & FB55 64341 -1195 A
Store A-reg to WNDBTM. & FB57 64343 -1193 A
Load A-reg with 23 for VTAB. & FB59 64345 -1191 A
Store A-reg to CV. & FB5B 64347 -1189 TABV A

Jump to VTAB - set BASL,H RTS.

34 MONITORS PEELED

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Toad Y-reg with SFF for INVFLG. FEB4 65156 -380 OSEINORM Y
Fall into SETIFLG.
Load Y-reg with $3F for INVFLG. FE8J 65152 ~384 SETINV Y

BR to SETIFLG.

Store Y~reg in INVFLG and RTS. FE86 65158 -378 SETIFLG none
$FF white on black (from SETNORM)
$3F black on white (from SETINV)
$7F flashing (characters from user call with upper 2 bits of 1)

Set CSWL,H to point to COUTL. FE93 65171 -365 SETVID A,X,Y
CH 36 $24 WNDLFT 32 $2¢
cv 37 $25 WNDWDTH 33 $21
INVFLG 50 $32 WNDTOP 34 $22
BASL,H 40-41 $28-29 WNDBTM 35 $23

CSWL,H 54=55 $36-37

SCREEN FORMAT CONTROL
BY POKE/STORE

In many cases, the routine in the Monitor described on the previous
page exists because the Monitor itself uses the function described.
Often, calling the Monitor for a specific control function is doing it
the hard way. This table indicates other ways of accomplishing the
same results.

Function Method
Set GRAPHICS display mode. POKE -16304,0 or STA CP5¢
Set TEXT display mode. POKE -16303,0 or STA C@51

Set GRAPHICS mode to full screen. POKE -16302,8 or STA C@52
Set MIXED GRAPHICS and TEXT mode. POKE -163¢1,8 or STA C@53

Set display to Primary Area. POKE -163003,8 or STA C@54
Set display to Secondary Area. POKE -16299,80 or STA C@#55
Clear HIRES/Set LORES for graphics. POKE -16298,§ or STA C@56
Set HIRES Graphics mode. POKE -16297,0 or STA C@#57
Set top line of Scroll Window. POKE 34,line-number (¢#-23)
Bottom must be greater than top.
Set left edge of Scroll Window. POKE 32,column-number (@-39)
Left edge + width not to exceed 4.
Set width of Scroll Window. POKE 33,number-of-columns (1-4¢),

Left edge + width not to exceed 40.
Set bottom line of Scroll Window. POKE 35,line—number (1-24)

Bottom must be greater than top.
Set Normal (white on black) text. POKE 5(,255 or store $FF in $32
Set Flashing text. POKE 53,127 or store $7F in $32
Set Inverse (black on white) text. POKE 5@,63 or store $3F in $32

KEYBOARD INPUT AND SCREEN OUTPUT 35

If the above means are used to change the Scroll Window configuration,
the user program should also take steps to insure that the cursor has
a valid position within the window (CV, CH, BASL,H). CALL =936 will
place the cursor in the Window.

$CP5¢ and $CPS51 control Text mode vs. all or some graphics. The other
items regarding HIRES or LORES or full or part screen graphics may be
established first, but will not be apparent until S$CP5¢ is tickled.
Likewise, $C@#51 will bring back Text Mode regardless of the other
settings.

SCROLL WINDOW DATA MANIPULATIONS

This table describes three types of Scroll Window data manipulation
entry points. The first is Monitor label ESCl, the Escape Key
Processor, because it transfers control to a number of the other entry
points depending upon the A-reg contents and Carry being set. One
entry point of the Autostart Monitor is included because it handles
one requirement of ESCl - that Carry be set.

The second part of the table is a list of entry points supporting
clearing or setting parts of the screen to a particular value.

The third part of the table describes points causing conditional or
unconditional scrolling of the window.

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Call screen data manipulation. FC2C 64556 =980 ESCl AY
If Carry is set and A-reg =
@ goto HOME
A goto ADVANCE
B goto BS
C goto LF
D goto up
E goto CLREOL R
F goto CLREOP

other RTS to caller.

The RTS at the end of each of
these functions returns control
to the caller of ESCIl.

36 MONITORS PEELED

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroyed

Clear from line (CV) col (CH) to FC42 64578 -958 CLREOP A,Y
end of Scroll Window.

Clear from line (CV) col (Y) to FC44 64580 -956 A, Y
end of Scroll Window.

Clear from line (A) col (Y) to FC46 64582 -954 CLEOP1 A,Y
end of Scroll Window.

Clear Scroll Window to blanks, FC58 6460¢ -936 HOME AY

set cursor to top left corner
of the window.

Set CH=@, CV=(A), clear to EOP FC5A 64602 . ~934 ALY
(end of page = end of window).
Clear window from line (A) to FC5C 64604 -932 A, Y
blank, set cursor to left end of
line (CV).
Clear line from cursor FCIC 64668 -868 CLREOL A,Y
((BASL), (CH)).
Clear line from cursor (BASL),Y. FC9E 6467¢ -866 CLEOLZ A,Y
Set character in A-reg from FCA@ 64672 -864 CLEOL2 A,Y
cursor (BASL),Y to EOLine.
Clear line (BASL), then set FC95 64661 -875 SCRL3 AY
BASL,H from CV and WNDLFT.
Clear line from cursor (BASL),Y, FC97 64663 -873 A Y

then set BASL,H from CV & WNDLFT.
CH remains unchanged.

Zero to A-reg for CH. & FC62 64610 -926 CR A,?Y
Store A-reg to CH. & TFC64 64612 =924 A,?Y
Increment CV. & FC66 64614 =922 LF A,?Y
Compare CV to WNDBTM. FC68 64616 =920 A?Y
Set BASL,H; if (CV) < (WNDBTM),
do scroll if required.
Scroll the window, lines (CV) FC7¢ 64624 =912 SCROLL A,Y
thru (WNDBTM).
Scroll the window, lines FC72 64626 =910 A,Y
(A) through (WNDBTM).
Autostart Monitor extended service
Set Carry flag and JMP to ESCI1 FB97 64407 =1129 ESCOLD AY
to handle Escape key functions
A, B, C, D, E, F.
CH 36 $24 WNDLFT 32 $20
cv 37 $25 WNDWDTH 33 $21
INVFLG 5S¢ $32 WNDTOP 34 $22
BASL,H 40-41 $28-29 WNDBTM 35 $23

KEYBOARD INPUT AND SCREEN OUTPUT 37

CURSOR POSITION CONTROL

In general, the Cursor is at the position indicated by the contents of
CV (line number relative to top of screen) and CH (column number
relative to to the left margin of the Scroll Window). The memory
location of the cursor is the sum of the contents of BASL,H (which
contains the address of the leftmost character of the line within the
Scroll Window) and the contents of CH. Normally, then, BASL,H contains
an address computed from the contents of CV and WNDLFT. However, if
either CV or WNDLFT is changed without recomputing BASL,H then the
different routines of the Monitor may come up with unpredictable (or

at least undesired) results.

In the following table, the description includes indication of which
of the cursor address fields is being used for what. Note, for
example, that at $FC95 the line indicated by BASL,H is cleared, and
then BASL,H is recomputed from CV, WNDLFT for future references.

The ESCl and VIDOUT routines are included in the table because they
can be made to use (goto) the other entry points by passing them the
appropriate A-reg contents on entry. VIDOUT is the routine which
handles CR, backspace, and line feed when such characters are sent
through COUT1 (generally thru COUT). ESCl is the routine called to
accomplish the desired function when the keyboard routines are
operating in ESCAPE key mode. Thus, it has four way cursor movement
capability, as well as the capability of clearing the Scroll Window
from cursor present position to end of current line or end of the
Scroll Window, or of clearing the entire Scroll Window and placing the
cursor at the top left corner of it. The function performed depends
upon the contents of the A-reg at entry, and the "set" condition of
the Carry processor status bit.

Entry point ESCOLD of the Autostart Monitor is included in the table
due to its relationship to ESCl.

The next group of points contains those which clear data on the screen
as well as move the cursor.

The third group is entry points supporting movement of the cursor
relative to its current position.

The fourth group supports*positioning the cursor at a desired location
without reference to its current position. To do this, the program

should set CV and CH and then call VTAB to set BASL,H.

38 MONITORS PEELED

ADDRESS TABLE

Function Hex +Dec =Dec Monitor Registers
Addr Addr Addr Label Destroyed

Call screen/cursor manipulation. FC2C 64556 =98¢ ESC1 A,Y
If Carry is set and A-reg =
@ goto HOME

A goto ADVANCE
B goto BS

C goto LF

D goto UP

E goto CLREOL

F goto CLREOP

other RTS to caller.
The RTS at the end of each of
these functions returns control
to the caller of ESCl.
Set Carry flag and JMP to ESCI FB97 644¢7 -1129 ESCOLD A,Y
to handle Escape key functions Autostart only
A, B, C, D, E, F,

Place character in screen memory FBFD 64509 -1¢27 VIDOUT A,Y
or process control character.

If (A) $9F or < $8¢ goto STOADV.

If (A) $8D goto CR.

If (A) $8A goto LF.

If (A) = $88 goto BS.

If (A) $87 sound "bell".

If (A) other ignore it; RTS

NV

Clear Scroll Window, set cursor to FC58 646J¢ -936 HOME A,Y
top left corner of the window.
Set CH=@), CV=(A), clear to EOP FC5A 64602 =934 AY
(end of page = end of window).
Clear window from line (A) to FC5C 64604 =932 AY
blank, set cursor to left end of

line (CV).
Clear line (BASL), then set FC95 64661 =875 SCRL3 A,Y
BASL,H from CV and WNDLFT.
Clear line from cursor (BASL),Y, FC97 64663 -873 A, Y
then set BASL,H from CV & WNDLFT.

Load Y from CH. & FBF 64496 ~104¢ STOADV AY
Store A-reg to screen at (BASL),Y & FBF2 64498 -1(38 A
Increment CH. & FBF4 6450¢ -1036 ADVANCE A
Compare (CH) with (WNDWDTH) & FBF6 64502 -1¢34 A

goto CR if CH not less.
Else return (RTS).
Move cursor left one column, to FCl§ 64528 =-10¢8 BS A
right end of previous line if
required and (CV) < (WNDTOP).

KEYBOARD INPUT AND SCREEN OUTPUT 39

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Move cursor up one line FClA 64538 -998 UP A
if (Cv) < (WNDTOP).
Zero to A-reg for CH. & FC62 6461 -926 CR A,?Y
Store A-reg to CH. & FC64 64612 =924 A,?Y
Increment CV. & FC66 64614 =922 LF A, 7Y
Compare CV to WNDBTM. FC68 "64616 =920 A,?Y
If CV not less decrement CV and

do scroll.

If CV less goto VTABZ to set

BASL,H and return.
Place cursor at line (A) col (CH) FBSB 64347 -=1189 TABV A

(store A to CV and set BASL,H

by JMP to VTAB).

Set BASL,H from CV and WNDLFT FC22 64546 =-99¢ VTAB A
by call BASCALC and add WNDLFT.)

Set BASL,H from A-reg and WNDLFT FC24 64548 =988 VTABZ A
by call BASCALC and add WNDLFT.

Set BASL,H to memory address for FBCl 64449 -1¢87 BASCALC A
left character of line in A-reg
(not left character of window).
Jump via CSWL, character print. FDED 65¢¢5 =531 COUT ?A

Character print to screen output FDF$ 65¢¢8 ~528 COUT1 2A
routine entry - normal for CSWL.
Print character to screen with
appropriate actions on controls
and control characters.
If (A)<$AP goto COUTZ, bypass
inverse video mask.

AUTOSTART MONITOR ONLY
Print character to screen via FDF6 65@14 =522 COUTZ none
VIDWAIT (pause if operator request)

and VIDOUT with save and restore

of A reg and Y reg.

OLD MONITOR ONLY

Print character to screen via FDF6 65@14 =522 COUTZ none
VIDOUT with save and restore

of A reg and Y reg.

CH 36 $24 WNDLFT 32 $2¢
Ccv 37 $25 WNDWDTH 33 $21
INVFLG 5¢ $32 WNDTOP 34 $22
BASL,H 4@-41 $28-29 WNDBTM 35 $23

40 MONITORS PEELED

GENERAL TEXT TO THE SCREEN

The preferred method of sending text to the screen is by loading the
character desired into the A-reg and calling COUT to handle it from
there. The reason this is preferred is that if you want to send the
output to some device other than the screen, you can change CSWL,H
to point at the program supporting such other device. There are
times, however, when you’ll want to write to the screen regardless of
the setting of CSWL,H. COUTI1 is the entry point for screen-only
output, where reverse video display or flashing characters are set
using INVFLG. Entry at this point for the Autostart Monitor also
allows you to stop output, using the control-§ key.

COUTZ may be used for output to the screen without modifying the
character by using INVFLG. That is, calling COUTZ with a character in
the A-reg will place that character on the screen as is, without using
INVFLG to display the character in inverse video or flashing mode. In
the Autostart Monitor, entry at COUTZ is still early enough to handle
control-§8 entry, stopping the system if the character being written is
a Carriage Return while the keyboard buffer contains a control-S.

VIDOUT is the routine which interprets the character and places it on
the screen if it is not a control character. If the VIDOUT routine is
to be called directly (to bypass control-S handling in the Autostart
Monitor, for example), then the calling program must save the A-reg
and Y-reg before and restore the A-reg and Y-reg after, because they
are both destroyed in the VIDOUT routine.

Output to the screen may be written via these alternate entry points.
However, note that the Monitor will still use COUT for the keyboard
input echo function, temporarily setting INVFLG to $FF for white on
black for each character echoed.

Following are addresses of the above mentioned locations, and a few
other entry points which will output the specified character(s) (via
COUT) without the calling program having to load them into the A-reg
before the call. .

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Print a byte to specified output FDED 65@¢¢5 =531 COUT none

device by JMP (CSWL), normally

COUT1 for screen.

Character print to screen output FDFP 65¢0¢8 =528 COUT1 none
routine entry - normal for CSWL.

Print character to screen with

appropriate actions on controls

and control characters.

If (A)<$A@ goto COUTZ, bypass

inverse video mask.
AND (A) with INVFLG. & FDF4 65¢12 =524 7A

KEYBOARD INPUT AND SCREEN OUTPUT 44

Function

Hex
Addr

+Dec
Addr

=Dec
Addr

Monitor Registers
Label Destroyed

Print a byte to the screen.

See AUTOSTART and OLD differences
toward end of this table.

Process char. in A-reg to screen.
If control character, do control.
If display character, store in

screen refresh memory.

Store A-reg to screen at
(BASL,H),(CH), then increment
CH and goto CR if window exceeded.

Store A~reg to screen at (BASL,H),Y
then inc CH and goto CR if window
exceeded.

Increment CH and goto CR if window
exceeded.

Test CH. Goto CR if CH => WNDWDTH.

If A=$8D, $8A, $88, or $87 do it:
$8D carriage return goto CR
$8A line feed goto LF
$88 back space goto BS
$87 bell sound "bhell"

Set INVFLG to $3F = inverse video.

Set INVFLG to $FF = normal video.

Set INVFLG from Y-reg.

FDF 6

FBFD

FBF@

FBF2

FBF4

FBF6
FCP4

FE8¢
FE84
FE86

65014

64509

64496

64498

64500

64502
64516

65152
65156
65158

~522

-1¢27

~1949

-~1¢38

~1¢36

-1034
-192¢

-384
-38¢
-378

CouTZ

VIDOUT

STOADV

ADVANCFE

SETINV
SETNORM
SETIFLG

none

AY

AY

none

AUTOSTART MONITOR ONLY

Print character to screen via
VIDWAIT (stop if operator request)

and VIDOUT with save and restore
of A and Y regs.

Test for operator pause request.
If (A)=$8D (carriage return), and
if keyboard register is full, and
if keyboard reg contains entl-S,
then fall into KBDWAIT.

Else, goto VIDOUT.

Pause system per operator request.
Loop until new key pressed.

If next key pressed is cntl-C
then goto VIDOUT, leaving cntl-C
in keyboard register.

FElse, clear keyboard strobe and
goto VIDOUT.

FDF6

FB78

FR88

65014

64376

64392

=522

~-1160¢

-1144

COUTZ

VIDWAIT

KBDWAIT

none

OLD MONITOR ONLY

Print character to screen via
VIDOUT with save and restore of
A-reg and Y-reg.

FDF6

65014

-522

CouTZ

none

CH 36 $§24 UNDLFT

cv 37 $25 WNDWDTH

INVFLG 5 $32 WNDTOP
BASL,H 4p-41 $28-29 WNDBTM

42 MONITORS PEELED

32
33
34
35

$26¢
$21
$22
$23

CONTROL CHARACTERS

Note:

The following control characters have special meanings for screen
display.

$8D Carriage Return

$8A

$88

$87

In the Autostart Monitor, the COUTZ routine calls (JSR) VIDWAIT,
which handles the control-S function before jumping to VIDOUT.
The COUTZ routine in the 0ld Monitor calls VIDOUT.

When the VIDWAIT routine determines that the character being

"written" is a Carriage Return, it then tests the keyboard input
buffer for a control-S. If so, it clears the keyboard hardware for

another entry and loops until another key is pressed. If this
entry is other than a control-C, the keyboard strobe is cleared.
Otherwise the keyboard is left filled with the control-C for the
calling program to detect and handle. Then VIDWAIT JMP’s to
VIDOUT.

Line Feed

The cursor is moved down one line unless this would put it on a
line below the Scroll Window. In that case, the contents of the
Scroll Window are moved up one line, and the cursor stays on the
current screen line.

Backspace

The VIDOUT routine moves the cursor to the left one space by
decrementing CH. If CH goes negative it is set to (WNDWDTH)-1 and
CV is decremented. If decrementing CV would take it above (WNDTOP)
CV is not decremented. Negative scroll is not supported.

Sound the Bell
The speaker is pulsed 100¢ times per second for one tenth of a
second.

Any other character in the range $8@ thru $9F is dropped. It does
not cause cursor motion or memory modification.

OUTPUT WITHOUT THE SCROLL WINDOW

If all or part of the screen is to be used in a direct addressing
manner, it is necessary to avoid certain Monitor services. In general,

the

Scroll Window services provided by the Honitor are:

1. Scroll all text in the window up one line if a carriage return

or line feed takes the cursor down through the bottom line of
the window.

2. Automatically assume carriage return if window width is

exceeded.

KEYBOARD INPUT AND SCREEN OUTPUT 43

3. Place the cursor at the left edge of the Scroll Window instead
of at the left edge of the screen on a carriage return.

4, Support screen clear functions:
A. Clear the window, place cursor at top left corner.
B. Clear the window from current cursor position.
C. Clear line to the right of cursor position.

When using all or part of the screen as a random access display, these
automatic services need be avoided.

If the full screen is to be used as a random access display, without a
portion being used as a working Scroll Window, the problem is not too
difficult. Consider leaving the whole screen defined as the Scroll
Window.

l. The scroll operation only occurs if a carriage return or line
feed or exceeding window width occurs on the bottom line of the
Scroll Window. Avoid this by not having the program output CR or
LF or excessive data on the bottom line of the screen, and by
keeping the cursor away from the bottom line of the screen
during keyboard input operations.

2. The full screen is defined as the Scroll Window by the Monitor
when the RESET key is pressed. A user program can restore the
window parameters to this configuration if they have been
altered by calling "Set Normal Scroll Window" at $FB3C or 64316
or -122¢.

3. Position the cursor where desired before printing a string of
characters: POKE the line number into CV and call VTAB for the
line and then POKE the character mumber into CH.

4, OQutput the string of characters by the same means as if operating
with scroll services, being careful not to unintentionally
exceed window width or output carriage returns. Depending on
your screen design, however, you may intentionally do each of
these.

Note that program output of a carriage return does not clear the line
to the right of the carriage return, but keyboard input of a carriage

return does (if reading the keyboard is being done by the Monitor get-—
line routines).

If part of the screen is to be allocated as an operating Scroll Window
while the remainder of the screen is to be directly addressed, then a
different (lower) level of Monitor services must be called upon.

One way to support a divided screen is by using the Scroll Window for
data input with the Monitor get-input-line services, and by using the
Scroll Window support for whatever output the program intends to put
there. Then use parts of LORES graphics support for placing characters
on the screen outside of the Scroll Window, as described below. The

44 MONITORS PEELED

aim here is to leave support of cursor position (zero page fields CV,
CH, and BASL,H) up to the Monitor, and use other methods/fields for
placing characters outside the Scroll Window.

To place characters outside the Scroll Window,

1. With the line number in the A-reg, call GBASCALC to set GBASL,H
to point to the memory address of the left character position of
the indicated screen line.

2. With Y-reg indicating horizontal position on the line, store the
desired character at (GBASL),Y.

Note that this technique does not interfere with LORES plotting if the

screen 1s being used in mixed mode, because PLOT calls always set
GBASL,H as required without regard to possible previous contents.

Another approach is available for the BASIC or APPLESOFT programmer.
Again, the Scroll Window support can be used for some things, while
the following approach can be used to place characters on the screen
outside of the window. That approach is to compute the screen memory
location for each byte to the screen, and poke the byte there. A
variation on that approach is shown by the sample program. In the
sample, the Monitor VTAB routine is used to assist in building a table
of memory locations indicating the starting points of the screen
lines. This is an easier alternative than using the modulo arithmetic
formula described in the section '"Pages Four thru Eleven". Note that
adding 1024 to each value in the table gives the memory address for
that line in the secondary display area.

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

OUTSIDE OF SCROLL WINDOW
Compute memory address for line in F847 63559 =-1977 GBASCALC A
A-reg; set GBASL,H.

INSIDE SCROLL WINDOW

Write byte in A-reg to screen at FDF§ 650¢8 -528 COUTI 7A
cursor (CV),(CH) using INVFLG and

supporting cursor move.

Write byte in A-reg to screen at FDF6 65¢14 =522 COUTZ none
(CV),(CH) with cursor move but

not INVFLG.

Clear Scroll Window to blanks, FC58 6460¢ =936 HOME A,Y
cursor to top left corner.

Set CV from A-reg, clear window to FC5A 64602 =934 A,Y

end of window.

KEYBOARD INPUT AND SCREEN OUTPUT 45

Function Hex +Dec ~Dec Monitor Registers

Addr Addr Addr Label Destroyed

Place cursor at line (A) col (CH) FBOB 64347 -I189 TARV A
setting CV and BASL,H from A-reg.

Set BASL,H from CV (and WNDLFT). FC22 64546 -99¢ VTAB A
Set BASL,H from (A) and WNDLFT FC24 64548 -988 VTABZ A
without regard to CV.

Set BASL,H to left end of screen FBC1 64449 =-1(i87 BASCALC A
line (not window line) in A-reg.

CH 36 $24 WNDLFT 32 $20
cv 37 $25 WNDWDTH 33 $21
GBASL,H 38-39 $26-27 WNDTOP 34 $22
BASL,H 4¢-41 $28-29 WNDBTM 35 $23
INVFLG 50 $32

APPLESOFT SAMPLE PROGRAM

1¢

11

12

14

1¢9¢
1410
11¢¢
1199
1209
12¢9
121¢
122¢
1225
1229
123¢
1235
13¢¢
1399
140¢
15¢¢
15¢9
151¢
1511
1519
152¢
160¢
1601
17¢¢
172¢
1749
18¢¢

REM TEXT OUTPUT WITHOUT THE SCROLL WINDOW
REM SAMPLE PROGRAM
REM READS FROM KEYBOARD LINE, CHAR, STRING
REM AND PLACES THE STRING THERE
REM PROGRAM ENTRY
DIM LZ%(23): REM LINE ADDR TABLE
GOSUB 63¢¢0: REM MAKE UP TABLE
REM PRINT PART OF TABLE JUST FOR SHOW
FOR I =@ TO 21: PRINT I,L%(I): NEXT
REM DELAY TO ALLOW LOOK AT IT.
FOR I = 1 TO 5¢¢@: NEXT
PRINT: REM PRINT CR TO ALLOW CTL-S STOP IF DESIRED,
CALL - 936: REM CLEAR SCREEN BEFORE CHANGING WINDOW.
REM SET UP NEW WINDOW.
POKE 32,24: POKE 33,14: POKE 34,12: POKE 35,17
CALL -936: REM PUT CURSOR INTO WINDOW AREA,
INPUT LI,CL,SS$:REM READ A COMMAND LINE.
REM ALLOW A WAY OUT
IF SS$ = "END" THEN 639¢¢
SL = LEN (SS$)
REM CHECK LEGALITY OF LINE, ETC.
IF LI > 23 THEN 181¢
IF CL > 39 THEN 181¢
REM NOT PAST 4§ THOUGH.
IF CL + SL > 39 THEN SL = 4¢ - CL
REM PUT CHARACTERS ONE AT A TIME.
FOR I =1 TO SL
C$ = MID$ (SS$,I,1):C% = ASC (C$)
POKE LZ(LI) + CL + I - 1,C% + 128
NEXT I
GOTO 13¢¢: REM GO BACK FOR ANOTHER COMMAND.

46 MONITORS PEELED

181¢ REM LINE OR CH TOO BIG - ERROR.
1811 CALL - 936: PRINT "NOT SO BIG"

1812 PRINT "LN ";LI: PRINT "CH ";CL

182¢ GOTO 18¢¢

62999 REM

63009 REM MAKE UP LINE ADDRESS TABLE
63010 X% = PEEK (37): REM REMEMBER CV

63¢2¢ FOR I = ¢ TO 23

633§ POKE 37,I: REM SET CV

63¢31 CALL -99¢: REM CALL VTAB TO FILL BASL & BASH
63035 L%(I) = 256 * (PEEK (41)) + PEEK (40)

63040 NEXT I

63045 REM TABLE SETUP DONE -

63046 REM RESTORE CV AND RETURN

63¢5¢ POKE 37,X7%: CALL - 99¢: REM WITH PROPER BASL & BASH
63@6¢ RETURN

6390¢ CALL - 1233: END: REM RESTORE FULL WINDOW PRIMARY

SECONDARY DISPLAY AREAS

The Apple II hardware allows use of either of two memory areas for
display to the screen. The first, or primary, is memory locations
$040¢~-$@7FF. The secondary text (and low resolution graphics) display
area is $080¢-$UBFF. This area is normally overlaid by a user program
or data, but in special circumstances a user may desire to make use of
this secondary area as a screen display area.

The Monitor does not support the secondary display area as such. That
is, the routines in the Monitor which determine screen area memory
address from line number (CV) and character column (CH) do so only for
the primary display area. These routines perform correctly only for
lines ¢-23.

Following are descriptions of two ways of using the secondary display
areae.

COPY PRIMARY TO SECONDARY

There are times when it is desirable to change the display very
quickly, although the program produces the output slowly. For example,
a program might display data found by scanning a disk file. The
programmer might generate the original screen data in the primary
display area, then move it to the secondary display area and set the
hardware to display from secondary. The program may then proceed to
generate the next screen data in the primary area while the operator
is looking at the initial or previous display of results. A sample
program is provided later in this section showing how the Monitor Move
routine can be used to move the contents of the primary display area
to the secondary display area.

KEYBOARD INPUT AND SCREEN OUTPUT 47

SET BASL,H FOR SECONDARY DISPLAY PAGE

When the Monitor places a character in the screen memory area, it does
so using BASL,H as the address of the memory location for the left end
of the line, and (CH) as the displacement from the left end of the
line. BASL,H can be initialized to the memory location of a selected
screen line by setting the desired line number in CV and then CALLing
TABV. On return from that CALL, adding 4 to BASH changes BASL,H to
point to memory for the desired line in the secondary display area.
This will last until the program writes a carriage return or writes
characters beyond the right end of the Scroll Window.

If the Monitor is called upon to read from the keyboard, it "echoes"
the input characters to the screen. Input of a carriage return, one
backspace too many, a cursor movement, or a screen clearing Escape
Key function will cause BASL,H to be restored by the Monitor to point
within the primary display area.

In the case where one display area is to be used for text and the
other for graphics, it is preferable to keep the graphics in the
primary area and the text in the secondary area because the Monitor
recomputes GBASL,H continually for plotting functions, whereas for
text output BASL,H is recomputed only when it is necessary to move the
cursor to a new line.

It must be noted that APPLESOFT also does not (easily) support the

secondary display area. APPLESOFT in RAM occupies that part of memory,
and then some. Firmware APPLESOFT places the program code in that

memory space, unless special actions are taken. Those actions may be

noted in the sample program, which uses APPLESOFT and the secondary
display area. POKE 1$4,12 and 3¢27,0 before loading the program.

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Place cursor at line (A), col (CH) FB5B 64347 -1189 TABV A
(store A to CV and compute BASL,H

by JMP to VTAB.

Set BASL,H from CV and WNDLFT FC22 64546 =99¢ VTAB A
by call BASCALC and add WNDLFT,

Set BASL,H from A-reg and WNDLFT FC24 64548 -988 VTABZ A
by call BASCALC and add WNDLFT.

Set BASL,H to memory address for FBCl 64449 ~1(87 BASCALC A
left character of screen (not

window) of line in A-reg.

48 MONITORS PEELED

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Write byte in A-reg to screen at FDF - CouT ?7A
cursor (CV),(CH) using INVFLG and

supporting cursor move.
Write byte in A-reg to screen at FDF6 65@14 =522 COUTZ none
(CV),(CH) with cursor move but

not INVFLG.
Monitor Command Processor MOVE FE2C 65068 -468 MOVE A (Y=@)
routine. (AlL,H) thru (A2L,H) is

moved to (A4L,H) thru whatever.
Monitor- Command Processor GO entry. FEB6 65206 -33¢ GO AX,Y,P
Set PCL,H from AIL,H if entered. &)

Call RESTORE, set all regs but S & FEB9 65209 -327
JMP via PCL,H. FEBC 65212 =324

DIRECT CONTROL ADDRESSES

The following table describes the methods of setting the hardware for
display to various screen configurations by direct control rather than

by calling the Monitor. For some of these items there is no routine
in the Monitor which could be called to perform the function.

Function Method
Set GRAPHICS display mode. POKE -16304,0 or STA CP5¢
Set TEXT display mode. POKE -16303,0 or STA C@51

Set Graphics mode to Full Screen. POKE -163¢2,§ or STA C@52
Set MIXED GRAPHICS and TEXT mode. POKE ~163¢1,8 or STA C@53

Set display to Primary Page. POKE -1630¢,8 or STA CP54
Set display to Secondary Page. POKE -16299,8 or STA C#55
Clear HIRES = Set LORES mode. POKE ~16298,0 or STA CP56
Set HIRES Graphics mode. "POKE -16297,8 or STA C@57
Set top line of Scroll Window. POKE 34,1ine-number ($#-23)
Bottom must be greater than top.
Set left edge of Scroll Window. POKE 32,column~number (@-39)
Left edge + width not to exceed 4@.
Set width of Seroll Window. POKE 33,number-of-columns (1-4@),

Left edge + width not to exceed 40.
Set bottom line of Scroll Window. POKE 35,line—number (1-24)
Bottom must be greater than top.

CH 36 $24 WNDLFT 32 $20
cv 37 $25 WNDWDTH 33 $21
GBASL,H 38-39 $26-27 WNDTOP 34 $22
BASL,H 40-41 $28-29 WNDBTM 35 $23
INVFLG 50 $32

KEYBOARD INPUT AND SCREEN OUTPUT 49

INTEGER BASIC SAMPLE PROGRAM

1§ REM SAMPLE SECONDARY DISPLAY WAY
11 REM USING MONITOR MOVE TECHNIQUE

19 GOTO 1¢¢9: REM BYPASS SUBROUTINES

20 REM MOVE ARFA 1 TO ARFA 2

21 POKE 6@,§: POKE 61,4: REM SET AlL,H
22 POKE 62,255: POKE 63,7: REM SET A2L,H
23 POKE 66,0: POKE 67,8: REM SET A4L,H

25 POKE 71,0: REM SET Y-REG={}
26 POKE 58,44: REM $2C
27 POKE 59,254: REM SFE
28 CALL -327: REM DO THE MOVE
29 RETURN

190¢ REM PROGRAM START

1¢¢1 IF PEEK (75)<12 THEN 32¢¢¢
11¢¢ CALL -936: REM CLEAR THE SCREEN

12¢¢ PRINT "THIS IS THE SECONDARY DISPLAY AREA"
121¢ PRINT "NOTE THE LACK OF CURSOR"

13¢¢ GOSUB 20: REM MOVE TO SECONDARY
140¢ CALL -936: REM CLEAR PRIMARY AGAIN
141¢ PRINT "THIS IS THE PRIMARY AREA AGAIN"
15@¢ POKE -16299,8: REM SET SECONDARY
16@0¢ FOR I=1 TO 4@@@: NEXT I
17¢¢ POKE -16300¢,0: REM BACK TO PRIMARY
18¢¢ END
32¢0¢ REM NO LOMEM ERROR

32¢@1 PRINT "PLEASE LOAD AGAIN"
32¢¢2 PRINT "AFTER LOMEM:3072 "

320¢3 END

APPLESOFT SAMPLE PROGRAM

1¢ REM SECONDARY DISPLAY AREA WAYS AND MEANS
11 REM SAMPLE PROGRAM

12 REM READS FROM KEYBOARD

13 REM COMMAND, LINE, CHARACTER, STRING

14 REM AND PLACES THE STRING

1009 REM PROGRAM ENTRY

1099 REM IS SECONDARY AREA CLEAR?

1¢1¢ IF PEEK (1¢4) < 12 THEN 62¢¢¢

1¢2¢ GOSUB 630¢¢: REM CLEAR THE SECONDARY

50 MONITORS PEELED

130¢
13¢9
1319
1311
1312

139¢
149¢
1410
1429
143¢
1431
1449
1450
15¢¢
1510
1511
1512
159¢
16¢¢
161¢
162¢
17¢¢
1719
18¢¢
1810
1811
1812
1829

2009
2019

2109
2119

2209
23¢9

REM MAIN PROGRAM

IF Q = ¢ THEN 139¢: REM INPUT TO PRIMARY

REM SET INPUT TO SECONDARY
POKE 37,21: REM SET LINE 21
CALL - 99¢: REM SET BASL,H

POKE 41, PEEK (41) + 4: REM SET BASH TO SECONDARY

INPUT CC$,LI,CL,SS$
IF CC$ = "END" THEN 639¢¢

IF CC$ = "S" THEN 20¢¢: REM SET SHOW TO SECONDARY AREA
IF CC$ = "P" THEN 21¢¢: REM SET SHOW TO PRIMARY AREA
IF CC$ = "Q" THEN 22¢¢: REM SET INPUT SECONDARY

IF CC$ = "R" THEN 23§¢: REM SET INPUT PRIMARY

IF CC$ = "X" THEN 15¢¢: REM PUT STRING TO SECONDARY
POKE 1630¢,0: PRINT “WHAT? ": GOTO 13¢¢

SL = LEN (SS$)

IF LI > 23 THEN 181¢

IF CL > 39 THEN 1810

IF CL + SL > 39 THEN SL = 4§ — CL: REM NO AUTO CR

CX = PEEK (37): REM REMEMBER CV

POKE 37,LI: CALL - 99¢: POKE 41, PEEK (41) + 4
POKE 37,CX: REM RESTORE CV

POKE 36,CL: REM SET CH FOR THIS PRINT

SP$ = LEFT$ (SS$,SL): REM SHORTEN PRINT IN THIS SMPL
PRINT SP$

GOTO 1300

CALL - 936: REM VALUE TOO IARGE.
PRINT "NOT SO BIG": REM PRINT IN PRIMARY ONLY
PRINT "LN ";LI: PRINT "CH ";CL

GOTO 1309

POKE - 16299,0: REM SET SECONDARY

GOTO 13¢¢

POKE - 163¢¢,0: REM SET PRIMARY

GOTO 13¢¢

Q = 1: GOTO 13¢¢: REM SET INPUT TO SECONDARY
Q = ¢: GOTO 13¢¢@: REM SET INPUT TO PRIMARY

KEYBOARD INPUT AND SCREEN OUTPUT

51

62¢¢¢ PRINT "SETUP NOT MADE, NOW BEING DONE"
62¢1¢ PRINT "RUN THE PROGRAM AGAIN"

62018 REM 1@4 IS APPLESOFT ROM START
62¢19 REM BYTE BEFORE $C@1 MUST BE ZERO
62¢2¢ POKE 3¢72,§: POKE 1¢4,12: END

63¢00¢ BLS =" * REM CLEAR SECONDARY AREA
6301 FOR I = 1 TO 3:BL$ = BL$ + BL$: NEXT
63¢¢5 CX = PEEK (37)

63¢1¢ FOR I = ¢ TO 23

63¢2¢ POKE 37,I: CALL ~ 99¢

63030 POKE 41, PEEK (41) + 4

63¢4¢ POKE 36,0

63050 PRINT BLS

63060 NEXT

63¢7¢ POKE 37,CX: POKE 36,0

63¢8@¢ RETURN

6390¢ POKE 163¢¢,: CALL - 1233: END

52 MONITORS PEELED

CHAPTER 3

INTERRUPT PROCESSING

Some computers are capable of reacting to the raising (or dropping) of
a signal line by instantly saving the current status of the processor,
and quickly transferring control to some other program within the
computer. Changing the state of that line is called "causing an
interrupt”". The functions of the processor in saving its current state
and transferring control to some other location in memory is called
"taking an interrupt". The program which then receives control is

expected to "handle the interrupt". -

The 6502 microprocessor in the Apple II is sensitive to three
interrupt categories. These are RESET, MMI (Non-Maskable Interrupt),
and IRQ. Execution of a BRK instruction causes a form of IRQ interrupt
to be simulated.

The purpose of an interrupt, in general, is to allow some kind of
external device to make a condition known to a running program without
the program having to periodically or continually test for the

hardware condition. An example of the latter type of operation is the
Apple II keyboard operation. When keyboard input is to be accepted

memory location $CP@Q is tested repeatedly until presence of the sign
bit indicates that a key has been pressed. An example of interrupt
driven processing could be a special peripheral controller card,
attached to a telephone line, which caused the computer to be taken
over by a data acquisition program any time data was available, but
would allow the machine to be used for other things in between
transmissions.

When a computer recognizes (takes) an interrupt, the hardware should
accomplish three things.

1. Save processor status in such a way that execution of the
interrupted program can be continued after the interrupt has
been "serviced" or handled.

2. Prevent further recognition of that class of interrupts until
the interrupt handling program restores that interruptability.

3. Transfer control to the program meant to handle this type or
category of interrupt.

With the 6502 in the Apple II variations on the above three steps are
taken for the three different interrupt classes or categories.

1. When an IRQ (or BRK) or NMI interrupt is taken, the contents of
the program counter and the P-reg (processor status register)
are respectively pushed onto the stack. When a RESET interrupt
is taken, the processor holds the memory iIn READ mode until
control is transferred to the handler, so nothing of processor
status is pushed onto the stack.

INTERRUPT PROCESSING 53

2.

When the 6502 takes an IRQ interrupt, the P-reg is modified. If
a BRK instruction is executed, the $10 bit of the processor
status register is set to one before the P-reg is pushed onto
the stack. If the IRQ line was the cause of the interrupt, this
bit is set to zero before the P-reg is pushed onto the stack.

After the P-reg is pushed onto the stack, the $@4 bit is set to
inhibit recognition of any more IRQ category interrupts until
the interrupt handling program clears this condition.

With RESET and NMI there is no available facility for
preventing another interrupt while the current interrupt is
being handled.

The 65¢2 transfers control to the appropriate program for
handling an interrupt by means of "vectors". Memory addresses
SFFFA-$FFFF are reserved for this purpose. The final step of
taking an interrupt is loading of the program counter from the

vector for this class or category of interrupt. The following
table indicates the locations of the interrupt handlers for the

two Monitors.

Interrupt Vector Monitor Old Monitor Autostart

Taken Address Label Address Address
NMI SFFFA-B YNMI" $@3FB $@3FB
RESET $FFFC-D RESET $FF59 $FA62
IRQ/BRK SFFFE-F IRQ $FA86 SFALY

NMI INTERRUPT

The Apple II Monitor does not interfere with user handling of
the NMI interrupt. That is, the vector for NMI causes the 65@2
to transfer control of the computer to location $@3FB, where
the user is to place a JMP to the user-provided handler for
this type of interrupt.

RESET INTERRUPT SUPPORT

Pressing the RESET key on the keyboard causes a RESET interrupt
to occur. On all Apple II’s but the very early ones, power—on
also results in generation of a RESET interrupt.

The actions performed by the Autostart Monitor and the 0ld
Monitor RESET interrupt handlers are considerably different.
Therefore, they will be described separately.

54 MONITORS PEELED

IRQ/BRK INTERRUPT HANDLING

When either an IRQ interrupt is taken or a BRK instruction is
executed, the 6502 performs an interrupt sequence. The contents

of the program counter are pushed onto the stack. The $18 bit
of the P-reg is set or cleared to indicate the IRQ line vs.

BRK instruction, and then it is pushed onto the stack. The 6502
then sets the $@4 bit of the P-reg, preventing another
interrupt of this type from being recognized until this one is
handled. The 6502 then loads the Program Counter from the IRQ
hardware prescribed vector at $FFFE-$FFFF, and allows operation
of the computer to continue from that point. The Interrupt
Handler for IRQ interrupts is now in control.

RESET INTERRUPT—OLD MONITOR

When a RESET interrupt is taken the 0ld Monitor establishes a
predefined configuration of hardware and page zero fields. Primarily,
the keyboard is set as the current input device, the screen is set as
the current output device, and the screen configuration is set to full
screen Scroll Window with normal video.

Page zero fields KSWL,H, CSWL,H are set to make the keyboard and
screen active. WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whole screen as the Scroll Window. CV and CH are set to place the
cursor at the bottom left corner of the screen. INVFLG is set to
normal (white on black).

Hardware addresses are referenced to establish a known configuration
as follows.

$CP56 - clear high resolution graphics
$C@54 - display primary area
$CP51 - set text mode

Control is then transferred to the "top" of the Monitor at label MON,
location $FF65, at which point the '"bell™ is sounded and the Monitor
enters the command line read routine.

INTERRUPT PROCESSING 55

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers

Addr Addr Addr Label Destroyed

Set STATUS in SAVE area to . & FB2F 64303 ~1233 INIT A
Clear HIRES. & FB33 64307 -1229 A

Set primary display area. & FB36 64319 -1226 A

Set TEXT mode. & FB39 64313 -1223 SETTXT A

Set full screen scroll window by FB3C 64316 -122¢ A
branch to SETWND with (A)=@.

Set WNDTOP from A-reg. & FB4B 64331 ~12(5 SETWND A
Load A with ¢ for WNDLFT. & FB4D 64333 ~1203 A
Set WNDLFT from A-reg. & FB4AF 64335 -120¢1 A
Load A with 4@ for WNDWDTH. & FB51 64337 -1199 A

Set WNDWDTH from A-reg. & FB53 64339 -1197 A
Load A with 24 for WNDBTM. & FB55 64341 -1195 A

Set WNDBTM from A-reg. & FB57 64343 ~-1193 A
Load A with 23 for CV. & FB59 64345 -1191 A

Set CV from A-reg. & FB5B 64347 -1189 TABV A
JMP to VTAB to set BASL,H & RTS, FB5D 64349 -1187 A

Set INVFLG to $FF = normal video. FE84 65156 ~38§ SETNORM Y

Set INVFLG from Y-reg. FE86 65158 =378 SETIFLG none
Set port ¢ (keyboard) for input. FE89 65161 =375 SETKBD A,X,Y
Set port ¢ (screen) for output. FE93 65171 =365 SETVID A,X,Y

Monitor entry on RESET key pressed FF59 65369 =167 RESET
or Power on.

Call
Call

Call

Call
Clear

Sound

SETNORM - white on black. &

INIT -Text & full scroll. & FF5C 65372 ~164

SETVID - screen as output. & FF5F 65375 <161
&
&
&

SETKBD - keyboard = input. & FF62 65378 -158
6502 decimal mode (set hex) & FF65 65381 =~155 MON
bell. FF66 65382 =154

Monitor Command Processor Entry. FF69 65385 -151 MONZ

Set

[IFY1]

as prompt character.

RESET INTERRUPT—AUTOSTART MONITOR

The Autostart Monitor performs functions of three categories in
handling a RESET interrupt.

1.

2.

Establish a known hardware/software enviromment with regards to
the basic machine.

If the contents of memory (page three) do not indicate that a
power—on initialization has been performed, the Autostart

Monitor will perform power—on initialization. If a disk
controller card is present in one of the slots, power—on

initialization includes bootstrapping from that slot. If no

disk controller card is in the machine a control-B entry is
simulated. In either case, the appropriate language processor

56 MONITORS PEELED

receives control at the end of power-on initialization, with

page three fields set to indicate that a warm start is to be
performed on ensuing interrupts from the RESET key.

3. If the contents of memory (page three) indicate that power-on
initialization has already been performed, the Autostart
Monitor will transfer control via the RESET (Soft Entry) vector
in page three at the conclusion of '"handling" the RESET
interrupt. If DOS has been booted, this will result in transfer
of control back to the current language processor through DOS.
If DOS is not present, the normal setting of the RESET vector
will cause simulation of a control-C (warm start) reentry into
the current language.

INITIALIZE SYSTEM CONFIGURATION

When a RESET interrupt is taken, the Autostart Monitor establishes a
predefined configuration of hardware and page zero fields. Primarily,
the keyboard is set as the current input device, the screen is set as
the current output device, and the screen configuration is set to full
screen Scroll Window with normal video.

Page zero fields KSWL,H, CSWL,H are set to make the keyboard and
screen active. WNDLFT, WNDWDTH, WNDTOP, WNDBTM are set to define the
whole screen as the Scroll Window. CV and CH are set to place the

cursor at the bottom left corner of the screen. INVFLG is set to
normal (white on black).

Hardware addresses are referenced to establish a known configuration
as follow.

$CP56 - clear high resolution graphics
$CP54 ~ display primary area

$CP51 - set text mode

$CP58 - clear AN = TTL LO

$C@5A - clear AN1 = TTL LO

$C@5D - set AN2 = TTL HI

$C@SF - set AN3 = TTL HI

$CFFF - turn off Expansion ROM

$CBlP - clear keyboard strobe

On completion of all the above, the Autostart Monitor sounds the BELL.

COLD/WARM DETERMINATION

After establishing a known basic hardware and software (screen
controls) environment, the Autostart Monitor executes a test to
determine whether power-on initialization is to be performed. Page
three locations $@¥3F2-$@3F3 contain the RESET (Soft Entry) vector, the
address to which the Autostart Monitor will transfer control on
completion of handling the RESET interrupt. Location $@3F4 is a

INTERRUPT PROCESSING 57

validation byte, used with $@3F3 to indicate whether or not power—on
initialization is to be performed. If the Exclusive OR of the contents
of these two memory locations is $A5, then power—on initialization is
considered to have been previously accomplished, and $@3F2-$@3F3 is
considered a valid address to which to transfer control.

POWER-ON INITIALIZATION

The first functions of power-on initialization are to establish in
page three ($@3F@-$@3F4) the BRK interrupt vector (see "BRK
Instruction Handling ~ Autostart Monitor") and the RESET Soft Entry
interrupt vector with validation byte. The RESET vector at this point
is set to $E@PP to simulate a control-B (initialize) entry for the
current language processor.

The Autostart Monitor next performs a routine which tests each slot,
from slot 7 through slot 1, for presence of a disk controller card.
If one is found, a jump is performed to $CX@#@ where X is the slot

number in which the disk controller has been found. This will result
in loading of DOS and presumably execution of the HELLO program.

Note: DOS 3.2 Replaces the RESET vector at $@#3F2-$¢3F3 and validation
byte at $@3F4, so that on a RESET interrupt, control will be passed
through DOS back to the current language processor.

If no disk controller card is found the Autostart Monitor changes the
RESET vector to $E@@3 (language restart or control-C entry point) and
then jumps to $E@P@ (language initialize entry point).

SYSTEM RESTART

If the $03F3-$@3F4 test described above is passed, the RESET vector at
$@3F2~8@3F3 is considered mostly valid. If it contains $E@¢@, it is

changed to SE@@3 and then BASIC is entered at $EPP@. If it is not
$E¢¢g, it executes an Indirect Jump via $@3F2-$@3F3 to the address

specified therein.

RESET VECTOR MODIFICATION BY USER

The RESET vector may be modified by user or program to send control to
some other address in the machine at the completion of Monitor
handling of the interrupt: For example, to cause the RESET key to
result in placing the machine in Monitor mode, execute the following
program;

1¢ POKE 1¢10,1¢5

2¢ POKE 1¢11,255

3¢ POKE 1012,9¢

4@ CALL -151: REM ENTER MONITOR
5¢ END

58 MONITORS PEELED

The following program is more general purpose. In order to set the
RESET vector to some address, poke the address into locations 1(1¢-
1911 ($@3F2-$03F3) and then CALL Autostart Monitor label SETPWRC
($FB6F or 64367 or -1169) to set location 1012 ($@3F4).

1¢ REM AD IS ADDRESS OF

11 REM ROUTINE TO RECEIVE

12 REM CONTROL AFTER RESET

20 POKE 1¢1¢,AD: REM SET 1O BYTE
3¢ POKE 1¢11,AD/256: REM SET HI
4@ CALL -1169: REM SET 1¢12

Note: If you try to run this on a system with an 0ld Monitor ROM, you
may destroy the program, or even the entire diskette. To avoid this
problem, execute the steps in the above program manually, on a system
with an Autostart ROM. Then, PEEK location 1§12 and get the value to
POKE into 1¢12, alleviating the need to CALL~-1169 at all.

ADDRESS TABLE

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroyed

Monitor entry on RESET key pressed FA62 64098 ~1438 RESET
or Power on.
CLD - clear 6502 dec,(set hex). &
Call SETNORM - white on black. & FA63 64099 -1437
Call INIT - Text, full scroll. & FA66 64102 -1434
Call SETVID - screen as output. & FA69 64105 =-1431
Call SETKBD - keyboard as input & FA6C 641¢8 -1428
Initialize hardware to known state. FA6F 64111 -1425 INITAN
Clear AN@ to TTL LO (ref. CP58). &
Clear ANl to TTL LO (ref. CP5A). & FA72 64114 =1422
Set AN2 to TTL HI (ref. C@5D). & FA75 64117 =1419
Set AN3 to TTL HI (ref. C@SF). & FA78 6412¢0 -1416
Clear Expansion ROM (ref. CFFF). & FA7B 64123 -1413

Clear keyboard strobe. & FA7E 64126 -141¢
Clear 6502 decimal mode (set hex).& FA81 64129 -14(7 NEWMON
Call BELL. & FA82 64130 <=1406

Test $3F3 vs. $3F4: Cold or Warm FA85 64133 -1403
If Cold goto PWRUP.
If ($3F3) XOR ($3F4) = $AS5, Warm.

Test SOFTEV ($3F2) low byte: FABF 64143 -1393
Non-zero means Cold Start done -
Goto NOFIX to use SOFTEV vector.
Zero means restart warm maybe.

Test SOFTEV hi for $E@ - language FA94 64148 -1388
cold start entry. If not equal,
SOFTEV is ok to use, goto NOFIX.

SOFTEV = $E@@@, change to $E@@3 for FA9B 64155 =1381 FIXSEV
future use and goto $EPPF to cold
start the language.

INTERRUPT PROCESSING §9

Function Hex +Dec -~Dec Monitor Registers
Addr Addr Addr Label Destroyed

JMP (SOFTEV): Use the Soft Entry FAA3 64163 -1373 NOFIX
vector to exit RESET handler.
Cold Start on RESET entry point. FAA6 64166 -137¢ PWRUP
Call APPLEII to clear screen and
put title on top line. &
Set page 3 interrupt vectors for FAA9 64169 -1367 SETPG3
BRK (OLDBRK) and SOFTEV (SE@@@).
Look for disk controller card in FAB4 64180 -1356
slots 7 thru 1. If none, goto
FIXSEV above to set SOFTEV for
BASIC restart & enter BASIC cold.
If disk found, JMP (LOC@#) to boot
from the disk.

Clear screen (call HOME). & FB60 64352 -1184 APPLEII A,Y
Place APPLE II legend on top line. FB63 64355 -1181 A Y
Set PWREDUP ($3F4) = ($3F3) XOR $A5 FB6F 64367 ~1169 SETPWRC A
Set STATUS in SAVE area to (. & FB2F 643¢3 ~-1233 INIT A
Clear HIRES. & FB33 643¢7 -1229 A
Set primary display area. & FB36 64310 -1226 A
Set TEXT mode. & FB39 64313 -1223 SETTXT A
Set full screen scroll window by FB3C 64316 -1220 A
branch to SETWND with (A)=@.

Set WNDTOP from A-reg. & FB4B 64331 -12¢5 SETWND A
Load A with ¢ for WNDLFT. & FB4D 64333 ~120¢3 A
Set WNDLFT from A-reg. & FB4F 64335 -1201 A
Load A with 4@ for WNDWDTH. & FB51 64337 -1199 A
Set WNDWDTH from A-reg. & FB53 64339 -1197 A
Load A with 24 for WNDBTM. & FB55 64341 -1195 A
Set WNDBTM from A-reg. & FB57 64343 -1193 A
Load A with 23 for CV. & FB59 64345 -1191 A
Set CV from A-reg. & FB5B 64347 -1189 TABV A
Jump to VTAB to set BASL,H & RTS. FBSD 64349 -1187 A
Set INVFLG to $FF = normal video. FE84 65156 -38@ SETNORM Y
Set INVFLG from Y-reg. FE86 65158 -378 SETIFLG none
Set port ¢ (keyboard) for input. FE89 65161 -=375 SETKBD A,X,Y
Set port ¢ (screen) for output. FE93 65171 -365 SETVID A,X,Y

FOR COMPATIBILITY WITH OLD MONITOR FF59 65369 =167 OLDRST
the RESET routine is still here.

Call SETNORM - white on black. &

Call INIT =~Text & full scroll. & FF5C 65372 -164

Call SETVID - screen as output. & FF5F 65375 -161

Call SETKBD - keyboard = input. & FF62 65378 -158

Clear 6502 decimal mode,set hex. & FF65 65381 =155 MON
Sound bell. & FF66 65382 =154
Monitor Command Processor Entry. FF69 65385 =151 MONZ
Set "*" as prompt character.

60 MONITORS PEELED

IRQ/BRK INTERRUPTS
IRQ/BRK INTERRUPT RECOGNITION

When either an IRQ interrupt is taken or a BRK instruction is executed
the 6502 performs an interrupt sequence. The contents of the program

counter are pushed onto the stack. The $1¢ bit of the P-reg is set or
cleared in indication of IRQ line vs. BRK instruction, and then it is

pushed onto the stack. The 65@2 then sets the $@4 bit of P-reg,

preventing another interrupt of this type from being recognized until
this one is handled. The 65@2 then loads the Program Counter from the

IRQ hardware prescribed vector at S$FFFE-$FFFF, and allows operation of

the computer to continue from that point. The Interrupt Handler for
IRQ interrupts is now in control.

IRQ INTERRUPT HANDLING

The 65¢2 directing vector at S$FFFE~S$FFFF points to Monitor program
label IRQ in both the 0ld Monitor and the Autostart Monitor. It will

be noted in the address table that the address is different, however.

The handling of an IRQ interrupt is identical in both Monitors. The
contents of the A-reg are stored at ACC ($45) for future reference.

The processor status (P-reg) pushed onto the stack by the taking of
the interrupt is popped into the A-reg, and then pushed back onto the

stack so that the stack and pointer are not changed. By shifting the
A-reg left three bits,.the IRQ routine moves into the sign bit the bit
which indicates (in this case by being a zero) that the interrupt is
an IRQ interrupt rather than execution of a BRK instruction. The
Monitor then executes a Jump Indirect instruction via location $@3FE-
S@3FF to the user provided IRQ Interrupt Handler. Note that on an IRQ
interrupt the X, Y, and S registers are not saved by the Monitor.
Also, the interrupt handler has the responsibility of clearing the $04
bit on exit to allow further interrupts.

BRK INSTRUCTION INTERRUPT

Execution of a BRK instruction causes the 6502 to simulate an IRQ
interrupt with minor changes. Due to the method the instruction is
handled, the address pushed onto the stack as part of the interrupt
simulation is two bytes beyond the BRK instruction executed.

Before pushing the P-reg onto the stack, the $1¢ bit is set to
indicate to the interrupt handling routine that the cause of the
interrupt was execution of a BRK instruction rather than the IRQ line.
After pushing the P-reg onto the stack, the $@4 bit is set to inhibit
IRQ interrupts from being recognized until the interrupt handler
clears the condition. Control is then transferred according to the
65@2 IRQ interrupt vector to Monitor label TRQ. As described above
regarding handling of an IRQ interrupt, the IRQ routine first stores
the A-reg at ACC ($45) for future reference, and then uses the A-reg
to test the stacked P-reg contents for a one in the $1¢ position. The
stack and stack pointer are not changed by this operation. The result

INTERRUPT PROCESSING 64

of the test is a transfer of control to Monitor label BREAK. Note in
the address table that the address of BREAK is not the same in the two
Monitors.

BRK INSTRUCTION—SAVING OF STATUS

In each Monitor the first thing done in the BREAK routine is to save
full machine status in page zero. The contents of the A-reg have
already been stored by entry into the IRQ interrupt handler. The BREAK
routine pops the stacked contents of the P-reg from the stack, and
does a JSR to SAV]1 at which point the remaining registers are saved.
Note that this clears the $@4 bit, allowing further IRQ or BRK
interrupts to be taken. The S-reg saved at that time, however, has
been incremented once by popping the P-reg back from the stack and
decremented twice by the JSR to SAVl. On return from SAV1, the BREAK
routine pops the Program Counter from the stack and stores it in page
zero locations PCL-PCH. The address table at the end of this section
indicates the page zero locations at which the above items are stored.

BRK INSTRUCTION—OLD MONITOR

The function of the BRK instruction interrupt handler of the 0ld
Monitor is to display through COUT the machine status at the time the
BRK instruction was encountered, and then return control to the top of
the Monitor at label MON. The details above describe the handling of
the interrupt through storage of machine status in page zero,
including PCL,H. The 0ld Monitor BREAK routine next does a JSR to
INSDS1 to display the instruction at the address indicated by PCL-PCH
(which is two bytes beyond the BRK executed), and a JSR to RGDSP1 to
display the contents of the five registers, P, A, X, Y, S. Note that
the S-reg as displayed is two less than it was at the time of the BRK
execution due to the JSR to SAV1. On completion of the register

display, a JMP to MON completes the handling of the interrupt.

BRK INSTRUCTION—AUTOSTART MONITOR

The Autostart Monitor handles IRQ interrupt which is really a BRK
instruction interrupt by saving registers and Program Counter in page
zero locations. The Autostart Monitor BREAK routine then exits via the
Apple-II BREAK vector at $@3F@-$@3Fl. Thus, it is possible for a user
program to gain control at that point and do something other than to
display the registers and return to the Monitor command processor.

Such a program must be sure to clear the $@4 bit in the P-reg on
return. During RESET interrupt handling for power-on, this vector is
initialized to point at Autostart Monitor label OLDBRK, which routine
does the same thing as was done in Old Monitor. That is, it does a JSR
to INSDS1 to display the disassembled instruction at the location
indicated by PCL- PCH, a JSR to RGDSPl to display the register
contents, and a JMP to MON to complete the handling of the interrupt.
Note: after DOS 3.2 has destroyed page 3 during the bootstrap
operation, it restores this vector to point to $FA59, OLDBRK.

62 MONITORS PEELED

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Disassemble the instruction at F8DP 63696 -1840 INSTDSP A,X,Y
(PCL,H), print thru COUT.

Display registers thru COUT from FAD7 64215 ~-1321 REGDSP A,X
save area, after carriage return.

Display registers thru COUT from FADA 64218 -1318 RGDSP1 A,X
save area.

Save 6502 regs at $45-49. FF4A 65354 -182 SAVE A, X
Save A-reg at ACC $45.

Save X-reg at XREG $46.
Save Y-reg at YREG $47.
Save P-reg at STATUS $48.
Save S-reg at SPNT $49.

Clear 6502 decimal mode (set hex).
Clear 65¢2 decimal mode (set hex) & FF65 65381 ~155 MON

Sound bell. & FF66 65382 -154
Monitor Command Processor Entry. FF69 65385 -151 MONZ
Set "*" as prompt character.

FF4C 65356 -18§ SAV1

FF4E 65358 -178
FF5¢ 65360 -176

FF54 65364 =172

R R

AUTOSTART IRQ/BRK HANDLING

Determine whether interrupt was FA4Q 64064 1472 1IRQ A
IRQ or BRK, transfer control
accordingly.

Handle BRK interrupt: FA4C 64076 <-146(BREAK AX,Y

Restore P-reg from stack.

Save registers (SAV1) X,Y,P,S.

Move interrupt location from stack
to PCL,H.

JMP (BRKV) to possibly user
specified routine (normally to
OLDBRK, below).

Default BRK interrupt handler FA59 64(89 -1447 OLDBRK A,X,Y
completion routine

Display instruction (2 bytes past),

Display registers, JMP to MON.

OLD MONITOR IRQ/BRK HANDLING

Determine whether interrupt was FA86 64134 ~14¢2 IRQ A
IRQ or BRK, transfer control
accordingly.

Handle BRK interrupt: FA92 64146 -139¢ BREAK AX,Y

Save registers,
Display instruction (2 bytes past),
Display registers, JMP to MON.

PCL,H 58,59 $3A,3B YREG 71 $47
ACC 69 $45 YSAV 52 $34
XREG 70 $46 STATUS 72 $48

INTERRUPT PROCESSING 63

64 MONITORS PEELED

CHAPTER 4

MISCELLANY
MACHINE LANGUAGE DEVELOPMENT AIDS

There are many routines in the Monitor which can be helpful when
developing machine language programs. Some of these are routines to be
used in the finished program, like the Monitor MOVE routine. Others

in this 1list are general, special, or very special screen output
routines, and some data manipulation routines.

ADDRESS TABLE ’

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Write byte in A to screen at CV,CH. FDED 65¢¢5 -531 COUT 2A

Print carriage return thru COUT. FDB8E 64919 -626 CROUT A
Print three blanks thru COUT, F948 63816 =172¢ PRBLNK A,X
Print (X) blanks thru COUT. F94A 63818 ~1718 PRBL2 A,X
Print character in A followed by F94C 638290 -1716 PRBL3 A,X
(X)~1 blanks.
Print BELL code thru COUT. FF3A 65338 -198 BELL A
Print "ERR" and BELL thru COUT. FF2D 65325 =211 PRERR A
Print low nibble of A as hex char. FDE3 64995 =541 PRHEX A
Print A-reg as 2 hex nibbles. FDDA 64986 =55¢ PRBYTE A
Print hex of Y,X regs. F94¢ 63808 -1728 PRNTYX A
Print hex of A,X regs. F941 638@¢9 -1727 PRNTAX A
Print hex of X-reg. F944 63812 -1724 PRNTX A
Print CR, then hex of Y,X regs, FD96 64918 -618 PRYX2 A,Y

then minus sign (or dash).
Print hex of Y,X regs, then dash. FD99 64921 =615 AY
Print CR, hex of AlH,AlL, and dash. FD92 64914 =622 PRAl AX,Y
Print memory as hex with preceeding FDA3 64931 -~6@5 XAM8 A (Y=
address from mmmm to mmm7 where
mmmm is initial content of AlL,H.
Print memory as hex from (AlL,H) FDB3 64947 =589 XAM A (Y=0)
thru (A2L,H).

Save A,X,Y,P,S regs at $45-49. FF4A 65354 ~182 SAVE A,X
A,X

Display registers with names from FAD7 64215 -1321 REGDSP ,
$45-49 as SAVEd, with preceeding

carriage return.
Display regs as above without CR. FADA 64218 -1318 RGDSP1 A,X
Restore regs A,X,Y,P not S from $45 FF3F 65343 =193 RESTORE A,X,Y,P

Monitor Command Processor GO entry. FEB6 65206 -33¢ GO AX,Y,P
Set PCL,H from AlIL,H {if entered. &
Call RESTORE, set all regs but S.& FEB9 65209 -327
Jump via PCL,H. FEBC 65212 =324

Move memory contents to (A4L,H) FE2C 65068 =468 MOVE A (Y=0)
from (AlL,H) thru (A2L,H).

MISCELLANY 65

Function Hex +Dec —-Dec Monitor Registers
Addr Addr Addr Label Destroyed
Compare memory contents (A4L,H) FE36 65078 -458 VFY A (Y=0)
to (AlL,H) thru (A2L,H), print
differences thru COUT.
Increment A4L,H ($42-43). & FCB4 64692 -844 NXTA4 A
Increment AlL,H ($3C-3D), set Carry FCBA 64698 -838 NXTAl A
if A2L,H less than AlL,H.
Set GBASL,H for line (A). F847 63559 -1977 GBASCALC A
Clear A-reg to a nibble, leaving F879 63609 -1927 SCRN2 A
in low nibble entry low nibble if
entry carry clear, high nibble if
entry carry set.
Disassemble the instruction at F8DP 63696 -184¢ INSTDSP A,X,Y
(PCL,H), print thru COUT.
Compute (PCL,H) + (LENGTH), leave F953 63827 -17¢9 PCADJ AX,Y
results in A,Y. Decimal Mode Flag
must be clear before calling PCADJ.
Read paddle (X) into (¥-reg). FBIE 64286 -125¢ PREAD A,Y
Wait .@l seconds, then sound bell. FBDD 64477 -1$59 A,Y
Load Y=192 for .l sec of bell. & FBE2 64482 -1(54 A Y
Toggle speaker at 1 KHZ for number FBE4 64484 ~-1¢52 BELL2 A,Y
of cycles in Y-reg.
Place character in screen refresh FBFD 645¢9 ~-1§27 VIDOUT A,Y
memory if not control character.
If known control character, do it.
If unknown control character, RTS.
Clear window to blank, set cursor FC58 646§ -936 HOME A,Y
to top left corner.
Load @ into Y, then print dash. FDIC 64924 -612
Print dash thru COUT. FDOE 64926 -61¢
Character print to screen output FDF§ 650¢8 =528 COUTI1 ?2A
routine entry - normal for CSWL.
Print character to screen with
appropriate actions on controls
and control characters.
If (A)<$AQ goto COUTZ, bypass
inverse video mask.
Monitor entry on RESET key pressed FF59 65369 -167 RESET
or Power on.
Call SETNORM - white on black. &
Clear 6502 decimal mode {set hex).& FF65 65381 =155 MON
Sound bell & FF66 65382 -154
Monitor Command Processor Entry. FF69 65385 =151 MONZ
Set "*" as prompt character &
Set (a) as prompt character & FF6B 65387 =149
Monitor Command Processor command FFA7 65447 -89 GETNUM
parsing routine; save hex digits
in A2L,H, return with command
(first non-hex) in A-reg, Y-reg
set for next character.
AlL,H 6§,61 $3C,3D A4L,H 66,67 $42,43 YREG 71 $47
A2L,H 62,63 $3E,3F PCL,H 58,59 $3A,3B XREG 70 $46

A3L,H 64,65 $40,41 ACC 69

66 MONITORS PEELED

$45

LORES PLOTTING

In standard (or low resolution) plotting mode, the graphic area of the
screen is 40 points wide and either 40 points high with 4 lines of
text below or 48 lines high. The X coordinate is horizontal and the Y
coordinate is vertical. The same memory area is used for low
resolution plotting as is used for text output to the screen. However,
in the graphics mode, each character position contains information for
two plot points, one immediately above the other. Thus, 2¢ text lines
are used to display 4@ graphics lines in the mixed mode, and 24 text
lines are used to display 48 graphics lines in the full screen mode.

There are four bits allocated for each point, by means of which the
point may be displayed in any of 16 colors.

The Monitor contains routines supporting the following functions:
Set display mode to mixed graphics and text.

Clear the graphics part of the screen (in whole or in limited
part).

Set a color control byte to be used for each plot point
established until another color is selected.

Plot a single point at an indicated vertical/horizontal position.

Plot a horizontal line from one vertical/horizontal point to a
vertical value.

Plot a vertical line from one vertical/horizontal point to a
vertical value.

Return to requesting program the color value of the point at a
specified coordinate.

There are limitations on some of these functions which may not always
be desirable. For example, using the entry point which sets mixed
graphics and text includes clearing the graphics part of the screen,
setting the Scroll Window to be the entire remainder of the screen,

and moving the cursor (straight down from current position) to the
bottom line of the screen. In addition, there is no Monitor entry
point for setting full screen graphics mode. However, the display mode
controls are easily set in any desired fashion merely by poking or
storing into the appropriate memory locations, so this is certainly no
major problem.

Various page zero locations are used for low resolution graphics mode.

MISCELLANY 67

PAGE ZERO FIELDS

Dec Hex
Routine Addr. Addr.

Description

GBASL,H 38-39 $26-27

COLOR 48 $30

MASK 46 $2E
H2 44 $2C
v2 45 $2D
ADDRESS TABLE
Function

is set by the GBASCALC routine to the memory
address of the plotting line specified.

contains the selected color value in both high
and low nibbles of the byte.

is used internally by the plot routines as S$FQ
or $0F to set either the high or low nibble of
the receiving byte depending on whether the
graphics line is the top or bottom of the two
displayed from that "text" line.

is the right end point for horizontal line
drawing.

is the bottom end point for vertical line
drawing.

Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Plot a point at line (A) col. (Y) F8@¢ 63488 -2(48 PLOT A
leaving GBASL,H and MASK set.

Plot a point, line per GBASL,H F8PE 635@¢2 -2¢34 PLOT1 A

and MASK, col. in Y.

Draw horizontal line at (A) from F819 63513 -2@23 HLINE A, Y
(Y) thru (H2), left to right.

Draw horizontal line at line F81C 63516 =2¢2¢ HLINEl A,Y
indicated by GBASL,H. MASK from
(Y) thru (H2).

Plot vertical line at (Y) from F828 63528 -2(¢8 VLINE A
(A) thru (V2).

Plot vertical line at (Y) from F826 63526 =2¢1¢ VLINEZ A
(A)+l+4carry thru (V2).

Plot vertical line at (Y) from F82D 63533 -20@3 A
(A)+1 thru (V2).

Clear full (48 lines) screen. F832 63538 ~1998 CLRSCR A,Y

Clear graphics area (40 lines). F836 63542 =1994 CLRTOP A,Y

Clear graphics partial from line ¢ F838 63544 -1992 CLRSC2 A,Y

thru (Y), 40 col. wide.

Clear graphics partial from line § F83A 63546 -199¢ A,Y

to (V2) 40 col. wide.

Clear graphics partial, top left F83C 63548 -1998 CLRSC3 A,Y

lines ¢ thru (V2),col.

68 MONITORS PEELED

thru (Y).

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Set LORES screen to COLOR from top F848 63552 -1984 A Y

left corner to (Y),(V2).
Entry A-reg must be (.

Entry Y-reg = right colummn to set.
Set V2 to last line to set.

Set COLOR for following points F864 63588 -1948 SETCOL A
to (A).
Change COLOR to (COLOR)+3. F85F 63583 -1953 NXTCOL A
Load to A color of point (A),(Y). F871 63681 =-1935 SCRN A
Set GBASL,H from A. (A)=line/2. F847 63559 -1977 GBASCALC A
Set Color Graphics display mode FB4§ 64328 -1216 SETGR AY
and following are also done;
Set graphics mode to Mixed. & FB43 64323 -1213 A Y
Clear graphics part of screen. & FB46 64326 -1210¢ A,Y
Load $14 to A for WNDTOP. & FB49 64329 -12¢7 A
Store A to WNDTOP. & FB4B 64331 -12¢5 SETWND A
Load @ to A for WNDLFT. & FB4D 64333 -120¢3 A
Store A to WNDLFT, & FBAF 64335 -1201 A
Load $28 to A for WNDWDTH. & FB51 64337 -1199 A
Store A to WNDWDTH. & FB53 64339 -1197 A
Load $18 to A for WNDBTM. & FB55 64341 -1195 A
Store A to WNDBTM. & FB57 64343 -1193 A
Load $17 to A for CV. & FB59 64345 -=1191 A

Go to TABV to set BASL,H.

DATA MANUPILATION FUNCTIONS

There are a number of routines in the Monitor which may be called by
user programs to perform often needed tasks. The routines described in
this section are miscellaneous routines which move data from place to
place or convert the form of information provided to the routines.

Note that some of these routines are in both the 0ld Monitor and the
Autostart Monitor while other routines are in only one or the other.
Three address tables are provided; one for both Monitors, one for the
01d Monitor, and one for the Autostart Monitor.

ROUTINES
Memory to Memory Move

This routine is used by the Monitor "M" command. As the Command
Interpreter scans the keyboard input, fields Al, A2, and A4 are

loaded. When the Command Interpreter encounters the "™" it calls label
MOVE, as indicated in the table. The contents of memory from locations
(Al) thru (A2) are moved to memory beginning at location (A4). See the
sample program in the section "Secondary Display Area Ways and Means"
for use of MOVE from BASIC, with the assistance of the Monitor GO
routine for setting registers on the way in.

MISCELLANY 69

Jump to Address with Registers Loaded

The routine in the Monitor which responds to the "G" command uses some
Monitor routines from BASIC or APPLESOFT in that the registers are
loaded from the save area and then control is transferred to the
location specified in PCL,H. Thus, a BASIC program can set up the
destination address and register contents, and then CALL -468 to have
the requested routine entered. This is used in sample programs in this
section and in the section on "Secondary Display Areas".

Increment Address Fields

The Monitor Move routine described above is a sample caller of the
NXTA4 and NXTAl routines. When NXTA4 is called, it increments the two
byte field A4L,H and then falls into label NXTAl. The routine at NXTAl
increments the two byte field at AlL,H, and then compares that field

to the two byte field A2L,H before returning to the calling program.
On return to the calling program, the Carry status bit is clear 1if
(AlL,H) is less than or equal to (A2L,H). Carry is set if (AlL,H) is
greater than (A2L,H).

Save 6502 Registers

The SAVE routine is used by various other Monitor routines to store
the 6502 registers in page zero locations $45-$49. This routine may
be called by user program under certain conditions - namely, that
neither the Monitor nor any other program will be calling SAVE at the
same time. In the 01d Monitor SAVE and RESTORE are used in support of
Monitor commands S and T, single step and instruction trace. In both
Monitors, the SAVE routine is called on a BRK interrupt at entry point
SAV]1 as the A-reg is stored at $45 on entry into IRQ interrupt
processing.

Restore 6502 Registers

The routine at label RESTORE is the inverse of the SAVE routine,
except that the S-reg is not loaded. In the 01d Monitor, RESTORE is
utilized by instruction step and trace routines before controlled
execution of each traced instruction. In both Monitors, the registers
are loaded by RESTORE in execution of the Monitor G command before
transferring control to the operator-indicated location.

Multiply Two Byte Fields

The MUL and MULPM routines multiply two byte fields to give a four
byte product. They exist only in the 0ld Monitor. If a program (such
as an assembler) calls MULPM at FB6@, and it is executed with the
Autostart Monitor in the machine, the result is that on each call the
screen will be cleared and "APPLE II" will be written on the top line.

70 MONITORS PEELED

Multiply Routine

Note in the following that the data fields for multiply and divide are
in the same format as other multiple byte numbers in the Apple: lowest
memory address is least significant byte.

Set Multiplier in $55,54 (MSB,LSB)
Set Multiplicand in $51,5¢ (MSB,LSB)
Should be zero - see note $53,52

Call/JSR FB6(# or FB63 (-1184 or -1181) (MULPM or MUL) depending on
sign conventions or requirements.

The result, in order of most significant to least, is in $53, $52,
$51, $5¢. this result is positive. If one of the two input factors
(but not both) was negative, then SIGN (at $2F) contains an $¢1 bit,

indicating that the result should be complemented by the user program
before further use.

NOTE: The table of values above indicates that $53,52 should be set

to zero before calling multiply. If this is not done, then the initial
contents of this field will be added to the result. For example, if a
table has an origin of $84¢0 with 7 byte long entries, the address of
entry 8 can be determined by entering the multiply with $84¢0¢ in

$53,52 and the 8 and 7 in position for the multiply.

Examples:
Called Inputs Outputs
Routine $51 $5¢ $55 $54 $53 $52 $51 $50 S2F

MULPM 00 01 (1[I 3 00 00 07 o1 [111]
¢ g1 g1 o¢ ¢ ¢¢ 01 00 @0
g4 gg 98 g¢ g9¢ 20 00 00 49
FC 00 08 d¢ 98 20 090 93 01
FC ¢¢ F8 ¢¢ 9¢ 20 d¢ 08 g2
7F FF 7F FF 3F FF ¢¢ ¢1 99
8¢ ¢¢ 92 g¢ g1 60 09 90 01
8¢ 09 8¢ 09 49 09 99 09 92

MUL g0 ¢1 -gg 01 g¢ o¢ 0¢ @1
99 ¢1 ¢1 g9 ¢g¢ 99 01 00
ps ¢¢ g8 dg 9¢ 20 ¢¢ @0
FC (¢ 08 ¢¢ g7 Ep 00 00
FC ¢¢ F8 0¢ F&4 20 00 00
g¢ FC ¢p F8 g¢ 9@ F4 20
8¢ ¢¢ @2 ¢¢ g1 g¢ 00 9¢
8¢ 0¢ 89 00 40 00 00 ¢¢
12 34 56 78 g6 26 @@ 60

MISCELLANY 74

Divide Four Byte Dividend by Two Byte Divisor

This routine divides a four byte dividend by a two bit divisor, giving
a two byte quotient and a two byte remainder. It is available only in
the 01d Monitor. This routine accomplishes the division of the number
in bytes $53,52,51,5¢ by the number in bytes $55,54, leaving the
quotient in $51,50 and the remainder in $53,52 (most significant to
least significant).

If the contents of $53,52 is larger than the contents of $55,54, then
the result will not fit in the quotient bytes - overflow is the
result. The calling program must not let this happen.

With regards to scaling, looking at the four byte dividend as an
integer value and the divisor in $55,54 as an integer, the quotient
and remainder fields are also integers.

Sign can be a problem if the DIVPM entry point is used. The sign bit
of the dividend is the $8@ bit of byte $51. If the intended divide is
two bytes (with $53,52 cleared before divide) then signed fields
division is supported, with the sign bit being the LSB of $2F. If the
call is to DIVPM, and if $2F contains $@1, then complement the results
before using them.

When using unsigned divide, entry point DIV, then the divide is 32 bit
field by 16 bit field with 16 bit results.

Examples:
Called Inputs Outputs
Routine Dividend Divisor Quotient Remainder Sign

$53 52 51 59 355 54 9ol 5 $53 52 $2F

DIVPM g¢ 40 00 gg @8 g¢ @8 g¢ 00 o¢ (111]
[$FB8l] @0 00 ¢0¢ @8 g0 g4 00 g2 00 ¢ (11}
[64385] @@ @1 ¢¢ dg 00 @2 8¢ ¢¢ o0 d¢ 1)
[-1151] 0@ 90 ¢¢ ¢3 g¢ g2 09 o1 99 g1)
99 00 39 00 ¢2 99 o0 18 %0 o¢ 90
90 ¢¢ 3¢ 0¢ 20 99 gg g1 1¢ g9 00
p9 ¢g 33 33 @9 22 g1 81 @¢ 11 1)
00 10 49 ¢¢ 94 gg @94 19 00 9g 00
00 20 83 00 g8 g¢ 94 19 00 o0 ?1

00 2¢0 B2 96 VB g¢ @4 gF ¢6 g9 (28

o0 10 41 96 B4 00 g4 19 91 g9 [T

DIV
[$FB84] ¢ 80 00 ¢ 8¢ 00 g1 ¢¢ 90 90
E64?Zg} ¢ 00 8¢ ¢ @8 ¢¢ 90 190 99 09
-1

72 MONITORS PEELED

Establish a RESET Vector

The Autostart Monitor supports an address vector for completion of
handling a RESET interrupt. It is called the Soft Entry vector as it
is designed to allow resumption of processing after a RESET. This
vector is in page three. It contains the address to which control is
to be transferred after the screen, keyboard, and other basic Apple

hardware items have been set to their "initial" states. For example,
the display hardware is set to display primary area text, and the

Scroll Window full screen values are set.

After such initialization is performed, locations $@#3F3 and $@#3F4 are
tested against one another to determine whether the vector in $@3r2-
?¢3F3 is to be considered valid. If so, control is transferred to
$@3F2-@3F3). Normally, this results in transfer of control to SE@@3
to accomplish the result of entry to the Monitor of a control-C, re-

entry into BASIC or APPLESOFT. During the bootstrap operation, DOS
installs its own restart point in this vector. And, of course, you may

wish to set some other value in this vector, such as that which will

cause the lonitor (with asterisk prompt) to be called, as was the
normal case with the 01d Monitor. To set a different value in that

vector, POKE or store the desired value in $@3F2-3$03F3 and then CALL
or JSR to SETPWRC (SFB6F or —-1169) to have the Monitor set $@#3F4
appropriately.

Convert Hex Characters to Value for Use

Programmer utility programs often need input of address or data in hex
rather than in decimal. The Monitor also uses input in hex, and

therefore has a way of converting input hex characters to a value in a
field. The GETNUM routine in the Monitor converts characters from the
keyboard input area ($020J-$@2FF) to hex stored in A2L,H and
conditionally in AlL,H and A3L,H.

The GETNUM routine converts characters in the $@20¢ area beginning at
$0200+(Y-reg) and continuing until a character is found which is not a

hex digit (not (=9 or A-F). The result in A2L,H (and AIL,H and A3L,H
if (MODE) = @) is the last four hex digits in the string converted if

the string is more than four hex digits. If the string is fewer than

four hex digits the result field contains the value right adjusted
with leading zeroes. A sample program is provided at the end of this

section showing use of GETNUM from APPLESOFT.

Disassemble an Instruction

The Apple II Monitor contains a disassembler by means of which one can
display a portion of a machine language program in mnemonics instead

of just hex. At label LIST ($FE5E) is the routine to which control is
passed when the Monitor command "L" is used. This routine sets a

MISCELLANY 73

counter to 2@, and then calls the single instruction disassembler 2§

times, with appropriate adjustment of the instruction pointer PCL,H.

This routine can be used as an example of how to use the locations in
the address table with labels INSTDSP and PCADJ.

The routine at INSTDSP uses the INSDS1 routine to set the zero page
locations FORMAT and LENGTH appropriately for the instruction at
(PCL,H). INSDS1 also prints to the screen the contents of PCL,H, the
address of the instruction to be disassembled. On return from INSDS1,
the INSTDSP routine controls the printing of the rest of the
disassembly line.

Note that PCL,H is not altered by disassembly of the instruction.
Thus, it must be "maintained" by the program which calls INSTDSP.
This is accomplished by calling the PCADJ routine, which returns the
new values to the calling program, to store into PCL and PCH in the
A-reg and Y-reg, respectively, having computed the new value from PCL
and PCH and LENGTH (set by INSDS1).

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

OLD MONITOR ONLY
Multiply signed fields leaving FB6¢ 64352 ~-1184 MULPM AX,Y
sign in LSB of SIGN. ;

Multiply fields unsigned, FB63 64355 -1181 MUL A,X,Y
(51,5¢) * (55,54) = (53,52,51,5@).

Divide signed fields leaving sign FB81 64385 -1151 DIVPM AX,Y
in SIGN LSB (from 51,55).

Divide unsigned fields FB84 64388 -1148 DIV A,X,Y
(53,52,51,58)/(55,54)=(51,5¢).

Set absolute values for ACL,H and FBA4 64420 -1116 MD1 AX,Y
AUXL,H leaving resulting sign in

LSB of SIGN (called by MULPM and

DIVPM).

AUTOSTART MONITOR ONLY
Set validity of RESET vector. FB6F 64367 -1169 SETPWRC A

BOTH OLD AND AUTOSTART MONITORS

Monitor Command Processor GO entry. FEB6 65206 -33¢ GO AX,Y,P
Set PCL,H from AlL,H if entered. &
Call RESTORE, set all regs but S.& FEB9 652¢9 -327
Jump via PCL,H. FEBC 65212 -324

74 MONITORS PEELED

Function Hex +Dec ~Dec Monitor Registers
Addr Addr Addr Label Destroyed

Move bytes in memory to (A4L,H) FE2C 65068 -468 MOVE A
from (AlIL,H) thru (A2L,H).
Note: Y-reg must be zero on entry.

Increment pointer A4L,H. & FCB4 64692 —-844 NXTAA A
Increment pointer AlL,H with set FCBA 64698 -838 NXTAl A
of carry if resulting (AIL,H) is

greater than (A2L,H).

Save 6502 regs A,X,Y,P,S at

$45-§49, FF4A 65354 -182 SAVE A,X
Restore 6502 regs A,X,Y,P from FF3F 65343 -193 RESTORE A,X,Y,P
$45-$48,

Convert hex characters from FFA7 65447 -89 GETNUM A,X,Y

$2¢0¢,Y to value in A2L,H (and
AlL,H and A3L,H if (MODE)=@).

Disassemble one instruction with F8D@ 63696 -1840 INSTDSP A,X,Y
display thru COUT.

Compute new PCL,H after disassembly F953 63827 ~17¢)9 PCADJ AX,Y

or trace or step ~ return results
in A,Y regs for (PCL,H).

APPLESOFT SAMPLE DATA MANIPULATION PROGRAM

19 REM DATA MANIPULATION FUNCTIONS

20 REM SAMPLE PROGRAM

3¢ REM MEMORY DUMP

49 REM OF HEX AREA INDICATED.

5¢ GOTO 10¢@: REM BYPASS SUBROUTINES

209 REM CALL GETNUM ROUTINE VIA GO ROUTINE

21¢ POKE 58,167: REM PCL=$A7

22¢ POKE 59,255: REM PCH=$FF

23¢ SIS =AD$ + "™ ": REM BUILD STRING TO STORE

240 FOR I =1 TO LEN (SI$) REM: STORE STRING IN INPUT BUFFER
25¢ CC$ = MID$ (SI$,I,1) REM: a2

260 CcC% = ASC (CC$) + 128 REM: e

27¢ POKE 512 + I,CC%

284 NEXT

29¢ POKE 71,1: REM SET YREG TO START AT LOCATION 513
3¢¢ POKE 49,0: REM CLEAR MODE BYTE

31¢ CALL - 327: REM GO PROCESSOR

32§ ST = PEEK (62) + 256 * PEEK (63): REM ST=START ADDRESS($A2)
33¢ IF ST > 32767 THEN ST = ST - 65536 REM ‘IWO’S COMPLEMENT

ADDRESS IF >= $8¢¢¢
34§ RETURN

MISCELLANY 75

600 REM DISPLAY HEX CONTENTS

61¢ SH%Z = ST / 256 REM GET HI ADDRESS BYTE

620 SL% = ST - SHZ * 256: REM GET LO ADDRESS BYTE

63¢ IF SHZ < ¢ THEN SHZ + 256: REM GET 2‘S COMP IF NECESSARY
640 POKE 6@,SL%:POKE 61,SHY

65¢ RMZ = SL%Z - (INT (SLZ / 8)) * 8 REM RM%Z = MOD 8 OF 1O BYTE
66¢ IF RM% THEN CALL =622

67¢ POKE 71,§#: REM SET "Y" REG TO ZERO

68¢ POKE 58,163: REM PCL = $A3

69¢ POKE 59,253: REM ©PCH = $FD

768 CALL - 327: REM CLEAR "Y" REG & $FDA3G

71¢ POKE 36,29: PRINT "! ";: REM SEPARATES HEX FROM ASCII
720 REM DISPLAY ASCII CHARACTER CONTENTS

73¢ SE = ST + 7 - RMY REM SEPARATES HEX FROM ASCII

740 FOR I = ST TO SE REM PRINT ASCII CONTENTS

75¢ CX = PEEK (I): IF CX < 128 THEN CX = CX + 128

760 CX$ = CHR$ (CX): IF CX < 16§ THEN CX$ = "?"

77¢ PRINT CX$;

78¢ NEXT
79¢ RETURN
1009 REM PROGRAM START

1¢1¢ PRINT "HEX DISPLAY"

1¢2¢ INPUT “ENTER ADDRESS ";ADS

1¢3¢ 1IF ADS = "END" THEN END

1¢4¢ IF LEN (AD$) = ¢ THEN 11¢¢:REM CONTINUE WITH NEXT AVAILABLE
ADDRESS

1¢5¢ GOSUB 20@:

1484 FOR J =1 TO 16: REM PRINT 16 LINES

1996 GOSUB 6¢(¢

11¢¢ ST = ST + 8 - RM%

111¢ NEXT

112¢ PRINT

113¢ GOTO 1¢2¢

MONITOR COMMAND PROCESSOR

The Monitor Command Processor is that part of the Monitor which
responds to commands entered with the "*" prompt character. These
commands include data movement from one location to another, cassette
tape reading and writing, instruction disassembly, and others
described in the Reference Manual. The Reference Manual contains a
complete description of use of these commands. This section of this
manual describes calling some of the routines from a user program
instead of from the keyboard, and jumping into the Monitor with no
return to the user program.

ENTERING THE MONITOR COMMAND PROCESSOR

The Monitor Command Processor is that part of the Monitor which reads
keyboard input with the asterisk prompt character and performs the

requested service. "Entering" the Command Processor implies turning
over control of the machine to the Monitor Mode. When the RESET key is

pressed with the 01d Monitor in the Apple the computer is placed in

76 MONITORS PEELED

Monitor Mode. When the RESET key is pressed with the Autostart Monitor
in the machine, the computer generally goes into BASIC or APPLESOFT.
With the Autostart Monitor the only way to get into Monitor Mode is to
CALL one of these entry points (generally CALL - 151).

In this mode, data may be moved in memory using the Monitor Move
command. Blocks can be read from tape via the cassette tape data

transfer commands. Or any of the other Monitor commands may be used.
However, having entered Monitor Mode, the Monitor Command Processor is

reading the commands from the keyboard and then acting upon them.

There are a number of entry points indicated in the address table for
"entering" the Monitor Command Processor. Please note that once the

Monitor is gumped to at the specified point, all of the initialization
described after that entry point is also performed. This is implied by

the "&" at the end of each function description.

CALLING THE MONITOR COMMAND PROCESSOR

"Calling" the Monitor Command Processor implies that return will take
place to the calling program. However, the driver part of the Monitor
Command Processor is not designed to operate in that fashion, so a
short machine language program is required to allow exit back to the
calling program. A sample program is provided at the end of this
section iIndicating the required setup. In the sample, the three byte
machine language routine is placed in page two (at $@2FC) but it may
be placed anywhere desired. With this program, Monitor calls from
BASIC or APPLESOFT are both supported.

A program which CALLs the Command Processor must first store the three
byte exit routine somewhere. Then the program can POKE a string of
Monitor commands into the input area, beginning at address $@2¢@, the

last command of each such string being a Monitor GO command to

transfer control to the exit routine. In the sample, the last Monitor
command in the string is "@2FCG". The function of the exit routine is

to pull one return address level (two bytes) off of the stack, and

then do an RTS to return to the BASIC, APPLESOFT, or machine language
calling program,

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Monitor Command Processor, "blank" FE@@ 65¢24 =512 BLI1 A,X,Y
entry point used for CR.

Monitor Command Processor, "blank" FE@4 65028 =5@8 BLANK A,X,Y
command entry point.

Monitor Command Processor, Store FE@B 65¢35 -5¢1 STOR A
routine.

Monitor Command Processor, set FEI8 65048 -488 SETMODE A,Y
MODE for colon, period, plus, or

minus.

MISCELLANY 77

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Store appropriate value to MODE, FEID 65¢53 =-483 SETMDZ none
entered from BLANK also.

Monitor Command Processor routine FE2¢ 65¢56 -48§ LT AX
for less than (<) command.
Monitor Command Processor MOVE FE2C 65068 =468 MOVE A (Y=@)

routine. (AlL,H) thru (A2L,H) is

moved to (A4L,H) thru whatever.

Monitor Command Processor VERIFY FE36 65@78 =~458 VFY A (Y=0)
routine. (AlL,H) thru (A2L,H) is

compared to (A4L,H) thru whatever

with differences printed thru COUT.

Monitor Command Processor LIST FESE 65118 =418 LIST A,X,Y
(disassembler) routine: list 20

instructions thru COUT.

Set INVFLG to $3F = inverse video. FE8f 65152 =384 SETINV Y
Set INVFLG to $FF = normal video. FE84 65156 =38 SETNORM Y

Set INVFLG from Y-reg. FE86 65158 =378 SETIFLG none
Set port § (keyboard) for input. FE89 65161 =375 SETKBD A,X,Y
Set port (A) for inmput. FES8B 65163 =373 INPORT A,X,Y
Set port (A2L) for input. FE8D 65165 =371 INPRT AX,Y
Set port ¢ (screen) for output. FE93 65171 =365 SETVID A,X,Y
Set port (A) for output. FE95 65173 =363 OUTPORT A,X,Y
Set port (A2L) for output. FE97 65175 -361 OUTPRT A,X,Y
Monitor Command Processor GO entry. FEB6 65206 -33¢ GO AX,Y,P

Set PCL,H from AlL,H if entered. &

Call RESTORE, set all regs but S.& FEB9 65209 -327

Jump via PCL,H. FEBC 65212 =324
Monitor Command Processor Display FEBF 65215 -321 REGZ
Register contents.
Monitor Command Processor Carriage FEF6 6527¢ -266 CRMON
Return entry.

First, simulate entry of blank.

Then POP 2 from stack and goto

Monitor Command Processor at MONZ.
Restore registers from $45-49: FF3F 65343 -193 RESTORE
Load STATUS and push to stack. &

Load A from ACC. & FF42 65346 ~-19¢

Load X from XREG., & FF44 65348 -188 RESTRI1
Load Y from YREG. & FF46 65350 -186

Load P from stack (PLP) and RTS. FF48 65352 -184
Save 6502 regs at $45-49. FF4A 65354 =182 SAVE
Save A~reg at ACC $45. &

Save X-reg at XREG $46., & FF4C 65356 ~18F SAV1
Save Y-reg at YREG $47. & FF4E 65358 -178

Save P-reg at STATUS $48. & FF50 65360 -176

Save S-reg at SPNT $49. & FF54 65364 =172

Clear 65@2 decimal mode (set hex).

78 MONITORS PEELED

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed
Monitor entry on RESET key pressed FF59 65369 -167 RESET
or Power on.
Call SETNORM - white on black. &
Call INIT - Text + full scroll. & FF5C 65372 -164
Call SETVID - screen as output. & FF5F 65375 =161
Call SETKBD - keyboard = input. & FF62 65378 =158
Clear 6502 decimal mode (set hex).& FF65 65381 =155 MON
Sound bell. & FF66 65382 -154
Monitor Command Processor Entry. FF69 65385 ~-151 MONZ
Set "*" as prompt character. & .
Set (A) as prompt character. & FF6B 65387 =149
Call GETLNZ to read command line. & FF6D 65389 -147
Clear MODE before scanning line. & FF7¢ 65392 =144
Pick up one command: FF73 65395 =~-141 NXTITM
Call GETNUM to scan input line,
saving hex digits in AZL,H, and
returning with non-hex in A-reg.
Save Y at YSAV = current place in
command line.
Call routine indicated by non-hex FF82 6541¢ =126
returned by GETNUM.
On return from Monitor Command FF85 65413 -123
Service routine, reload Y from
YSAV and goto NXTITM to process
next command in the line, if any.
Monitor Command Processor command FFA7 65447 -89 GETNUM
parsing routine; save hex digits
in A2L,H, return with command
(first non-hex) in A~reg, Y-reg
set for next character.
Call routine indicated by command FFBE 6547¢ -66 TOSUB
character:
Push address $FExx onto stacke.
Pass (MODE) to called routine in
A-reg.
Clear MODE before call.
Call selected routine by RTS.
Clear MODE byte between commands. FFC7 65479 -57 ZMODE
OLD MONITOR ONLY
Execute instruction at (PCL,H), FA43 64067 -1469 STEP
with display of instruction and
result registers.
Monitor Command Processor TRACE FEC2 65218 -318 TRACE
instructions routine.
Monitor STEP one instruction. FEC4 6522¢ -316 STEPZ
AlL,H 60,61 $3C,3D PCL,H 58,59 $3A,3B
A2L,H 62,63 $3E,3F ACC 69 $45
A3L,H 64,65 $40,41 XREG 79 $46
A4L,H 66,67 $42,43 YREG 71 $47
YSAV 52 $34

MISCELLANY 79

APPLESOFT SAMPLE PROGRAM

1 REM MONITOR COMMAND PROCESSOR SAMPLE PROGRAM

1¢ AA$ = "2FC:68 68 6¢ N 2FCG ": REM SET UP RETURN ROUTINE @G2FC
11 GOSUB 10¢¢: REM MOVE COMMAND TO KEYBOARD INPUT AREA
1¢¢ REM RETURN IS SET. NOW CALL

191 REM SOME MONITOR COMMANDS.

11§ AAS = "F8G@L 1¢@.1FF 2FCG "

12¢ CALL - 936: REM CLEAR THE SCREEN

13¢ GOSUB 1¢0@: REM DO DISASSEMBLY, MEMORY DISPLAY, RETURN
14¢ PRINT : PRINT :

141 PRINT "THATS ALL. "

15¢ END

1¢¢g¢ B = 511: REM FOR LOOP IS 1 TO LIM, SO B=BYTE BEFORE $20¢
1¢¢5 LIM = LEN (AAS)

141§ FOR I =1 TO LIM

162¢ P$ = MID$ (AAS$,I,1)

1650 P = ASC (P$) + 128

1¢7¢ POKE B + I,P

198 NEXT

1¢85 CALL - 144

1¢9¢ RETURN

SPEAKER USE THROUGH THE MONITOR

There are many ways to use the speaker in the Apple II. One of these
ways 1s to signal program events. The Monitor contains a routine which
supports this use by toggling the speaker at 1 khz for .l second. This
is the "beep" heard when the RESET key is pressed or at completion of a
tape record read or write.

The Apple II does not contain the only speaker in town. That is, some
printers which attach to the Apple II make a sound of some type when
presented with the BELL code. On the Apple II keyboard this is the
control-G. The character code is $87 or decimal 135. "Printing" this
character through COUT will cause the Apple to beep, and will cause a
printer '"bell" to sound if there is one.

There are two ways for a user program to call the routine in the
Monitor which responds to output of $87 by sounding the beep.

If you intend to sound the bell in the Apple regardless of
output device in use, then directly call the routine in the
Monitor which produces the sound; CALL ~1(59 (or CALL 64477),
or JSR FBDD expecting destruction of the A~ reg and Y-reg.

If you want to sound the bell of the Apple II if the screen is the
print device, or to sound the speaker in the printer, call the
entry point in the Monitor which places a $87 in the A- reg and

"prints" it through COUT; CALL-198 (or CALL 65338) or JSR FF3A
expecting destruction of the A-reg.

80 MONITORS PEELED

ADDRESS TABLE

Function Hex +Dec -Dec Monitor Registers
Addr Addr Addr Label Destroyed

Tf (A)=387 walt .Pl seconds, then FBDY 64473 —=I1P63 BELLI Y
sound the "bell". Else, RTS.

Wait .@l seconds, then sound bell. FBDD 64477 -1¢59 A

Load Y = 192 for .1 sec of bell. & FBE2 64482 -1¢54 A

Toggle speaker at 1 KHZ for number FBE4 64484 -1¢52 BELL2 A,

A

A

of cycles in Y-reg.
Print thru COUT "ERR" and bell code.FF2D 65325 -211 PRERR
Print bell code ($87) thru COUT. FF3A 65338 -198 BELL

CASSETTE TAPE INPUT AND OUTPUT

There are two primary entry points in the Monitor with regard to

reading and writing tape. They are READ and WRITE. The requirements for
Calling these are described below. There are a number of other routine
entry points which are used by the Monitor on bit and byte basis. These
are described below to the extent of location in the Monitor and
indication of which Apple II programs call them, but the precise

timings of instructions between consecutive calls is beyond the scope

of this manual.

As you will have found by now, some tape files are composed of one

record, and some of two records., For example, LOADing an APPLESOFT or
BASIC program results in two beeps, signaling the completions of the
reads of two separate records from the tape.

Definitions are in order:

A tape record is a single contiguous string of bits which is read

into or written from memory as a unit. A tape record is a
physical entity.

A file on tape is a series or sequence of one or more records
containing data in a logical organization. A file is a logical
entity.

An APPLESOFT or BASIC program file consists of two records. For BASIC,
the first of these records is two bytes long, and contains the length

of the second record. When the Monitor has satisfied BASIC’s read of
the first record, BASIC uses the record length indicated in that record

to determine the start and end points in memory into which the Monitor

will read the second record. Each call to READ or WRITE in the Monitor
accomplishes only one record input or output.

APPLESOFT programs are also SAVEd as two record sets or files. However,
the first record is three bytes long: the first two bytes indicate the
length, and the third byte is set to $55 to indicate a normal APPLESOFT
II (as differentiated from APPLESOFT I) program.

MISCELLANY 84

Some other programs write a longer (but fixed length) first record
containing length of the second record of the file, and other infor-
mation about the file such as date of creation or name of the file.

WRITE

SFECD 65229 -3¢7

Before entry at this point, set the first byte address in AIL,H ($3C-

3D) and the last byte address at A2L,H ($3E-3F). The Monitor will write
ten seconds of continuous tone (header) followed by the contents of

memory as specified, followed by one byte of checksum (the result of
Exclusive OR of all the data bytes written to the tape).

READ
$FEFD 65277 =259

Before entry at this point, place the first byte address into AIL,H
($3C-3D) and the last byte address into A2L,H ($3E-3F). The Monitor
reads the data from the tape, storing it into memory in the specified
locations, and maintaining a running Exclusive OR result in the zero
page field called CHKSUM ($2E). When the last specified memory location
has been filled from the tape, the Monitor reads one more byte and
compares it with the contents of CHKSUM. If equal, the Monitor sounds a
beep and returns to the calling program. If not equal, the Monitor
prints "ERR" through COUT before sounding the beep and returning.

If you want to have the calling program determine whether the tape was
read successfully or not, then some special actions must be taken. One
method is to compare the contents of CH ($24) before the tape read with
the contents after. If they are equal, ERR was not printed to the
screen. If the cursor horizontal position (CH) has changed across the
call to READ, then ERR must have been written to the screen. If this
condition is encountered, the program can then ask the operator to
position the tape and signal the program for another attempt at reading
the record. Caution: If CSWL,H points to a printer card or other
routine which does not output to the screen, CH will not be incremented
by the output of "ERR".

CASSETTE INPUT/OUTPUT INTERNAL ROUTINES

The following entry points/routines functions are described , but not
documented in sufficient detail for call by user program. For some of
them, timing is critical and the documentation for using them would
depend on how they were to be used.

82 MONITORS PEELED

HEADR
$FCC9 64713 -823

This routine writes the synchronization monotone which is the first

part of every tape record. When the WRITE routine calls HEADR, it loads
a $40 into the A-reg causing a 1§ second header to be written. The READ
routine also calls HEADR to delay from first detection of data coming

in from the tape to the first point at which reading for $/1 detection
begins. READ loads the A-reg with a $16 before calling HEADR so the
delay for hardware settling is set to about 3.5 seconds. This routine
is not called by BASIC or APPLESOFT, but it is used by the Programmer’s
Aid #1 Tape Verify routines which read the tape and compare the data to
memory instead of storing the data into memory.

RD2BIT
$FCFA 64762 =774

This routine causes looping with decrementing of the Y-reg until the
hardware has indicated two transitions of the tape input register. The
routine RDBIT is called twice for this purpose. Contents of the Y- reg
on return compared with contents on entry indicate the length of time
it took for the transitioms.

This routine is called from within the Monitor by the READ routine, to
delay entering data transfer mode until tape input is available. READ
calls HEADR for the 3.5 second delay on return from its call to RD2BIT.
This routine is also called from APPLESOFT and from the Tape Verify and
Shape Table Load programs in the Programmer’s Aid #1.

RDBIT
$FCFD 64765 -771

This routine loops with decrementing of the Y-reg while testing the

tape input register for transition from zero to one or onme to zero. Bit
value of zero or one is then determined from the residual count in the
Y-reg. This routine is called from within the Monitor routines RD2BIT
and READ. Tt is also called by Programmer’s Aid #l1 Tape Verify.

RDBYTE
$FCEC 64748 -788

This routine calls RD2BIT as required in order to assemble a byte of
information from the tape. It then returns to caller with the byte in
the A-reg. In addition to being called from the Monitor READ routine,
it 1s also called by Shape Table Load in Programmer‘’s Aid #1.

MISCELLANY 83

WRBIT

$FCD6 64726 -81¢

This routine accomplishes writing a bit to the tape when called by
either the HEADR routine or the WRBYTE routine.

WRBYTE
$FEED 65261 ~275

When called to write a byte to the tape, this routine uses WRBIT to
write ten bits to the tape. The only caller is WRITE in the Monitor.

PADDLES, BUTTONS & ANNUNCIATOR 1/0

The Apple II has a Game I/0 connector with hardware support for four

digital outputs, three digital inputs, and four analog inputs (called

paddles). The Monitor reads the paddles by writing a strobe to start
the paddle timer and then reading the selected paddle timer and

incrementing the Y-reg until that timer comes true. The result of the
read is in the Y-reg. Monitor support for digital outputs or digit
inputs is not required. Access to the digital I/O ports is gained by
PEEKing or POKEing the appropriate address, or by LDx or STx if
machine language is used. The Autostart Monitor does initialize the
digital output ports (annunciators) on any RESET key interrupt. AN@
and ANl are initialized to the clear (TTL LO) condition by reference
to addresses $C@58 and $C@5A. AN2 and AN3 are initialized to the set
(TTL HI) condition by reference to addresses $CP5D and $C@PS5F.

To use the Monitor support to read the setting of a paddle, JSR to
PREAD FBI1E 64286 -125¢

with paddle number (#-3) in X-reg, and on return the "value" of the
paddle will be found in the Y-reg. The A-reg is destroyed in the

process. (APPLESOFT and BASIC support paddle reading, so setting of
and looking at Y is not required there.)

Direct reading of the paddles may be accomplished by accessing the
paddle trigger to start all paddle timers and then reading the
appropriate paddle input address repeatedly while counting until the

value read from the paddle address no longer has the $8(bit set.

CAUTION: After reading a paddle, let some time go by before reading

another paddle or incorrect results may be a problem. When the paddl
trigger is strobed, all the timers start. If the first paddle you

read has a low value, on going back quickly to read another paddle

the transition you see may be from the first paddle trigger instead
of the second. See the sample program in the section "Use of

Control-Y with Parameters". Another solution is to do a read of a
fake paddle between real readings.

84 MONITORS PEELED

GAME /O HARDWARE ADDRESS TABLE

Game I/0 Hardware Address Hex +Dec -Dec Action/Comments
Addr Addr Addr

Start Paddle Timers. CO79 49264 -16272

Paddle ¢ timer. CP64 49252 -16284 Negative until
Paddle 1 timer. cP65 49253 -16283 timer
Paddle 2 timer. CP66 49254 ~16282 expires.
Paddle 3 timer. CP67 49255 =-16281

Paddle ¢ switch. CP61 49249 -16287 Negative
Paddle 1 switch. CP62 4925¢ ~16286 indicates
Paddle 2 switch. CP63 49251 -16285 button pushed.
Clear Annunciator ¢ output. C@58 4924 <-16296 POKE/STore

Set Annunciator ¢ output. C@59 49241 -16295 zero

Clear Annunciator 1 output. CO5A 49242 -16294 to

Set Annunciator 1 output. C@58B 49243 -16293 appropriate
Clear Annunciator 2 output. CB5C 49244 -16292 address.
Set Annunciator 2 output. CA5D 49245 =16291

Clear Annunciator 3 output. CPSE 49246 -1629¢

Set Annunciator 3 output. C@SF 49247 -16289

WAIT ROUTINE

The WAIT routine consists of a loop within a loop, constructed in
such a manner that the length of time spent in the loop varies
geometrically with the entry A-reg. A call to this routine will cause
a loop for a predictable length of time, such as is used by the
Monitor with regards to using the speaker as a bell. It may be
usable, for example, in writing data to a lower speed device like a
printer or a typewriter.

WAIT $FCA8 64688 -856

Anaylsis of the code indicates that the time between the call WAIT
(JSR) and the end of the RTS of WAIT is approximately

2,5A%%2 + 13.5A + 13 machine cycles of 1.#23 microseconds.
where A equals the contents of the accumulator.

An alternative formula is
TIME IN MICROSECONDS = (2.5 * (A"2) + 13.5 * A + MC) * MS

where A = contents of accumulator
MC = 13 machine cycles
MS = 1.023 microseconds

The following table indicates delay times in the WAIT routine for a
number of values of the A-reg on entry.

MISCELLANY 85

WAIT ROUTINE DELAY TIMES

A-reg Time in A-reg Time in A-reg Time in
(Dec.) seconds (Dec.) seconds (Dec.) seconds
1 0000629667 49 006830571 137 049907055
2 00005115 5¢ P@7¢97574 138 «$53624178
3 000077748
4 .B001@9461 53 007929273 15¢ .$59628624
5 900146289 54 .008216736 151 960412242
6 .$0¢188232 55 008539314
7 00023529 56 PP88@7¢¢7 162 .06936963
8 000287463 57 009199815 163 $70214628
9 000344751 58 .P¢9417738
59 PP973¢g776 174 .$79847196
17 -P3@987195 60 310048929 175 .#8(#753574
18 301693518
19 .$#1198956 73 .$1465¢383 184 .$89141151
74 P15¢48146 185 -$90¢98679
25 001956999 75 015435024
26 " WPB21¢1242 195 .$99955284
85 .$19665129 196 < 100969¢77
31 .$02899182 86 029116272
32 903074115 204 .109263561
96 024909027 205 .11¢323389
36 .((¥3824997 97 925416435
37 PBLB25535 218 124566618
195 .$29659839 219 «125698@56
41 004878687 1¢06 030213282
42 00510477 239 . 149400966
122 93976401 240 .15¢639819
45 .0@58137¢9 123 B4GLGLLYS
46 P0606@252 255 .169836414

USE OF CONTROL-Y WITH PARAMETERS

In the APPLESOFT manual there is a caution that if one paddle is read
another should not be read too quickly. Following is a machine

language program with which the interference between the paddles can
be demonstrated. s

Initiate this program by entering the Monitor command xxxxY, where
xxxxX is a number representing the amount of delay to use between
reading paddle ¢ and reading paddle 1, and Y represents control-Y.
The Monitor command "control-Y" causes a JMP to location $@3F8 at
which location we place a JMP to the beginning of the program.

As the Monitor scans the input command line, the value of the hex
digits is placed in page zero locations AlL,H ($3C-3D) for our use.

86 MONITORS PEELED

PADDLE INTERFERENCE—SAMPLE PROGRAM

@3F8

2099
2992
2004
2006
2¢gs8
2¢gA

2¢gc
20¢E
2010
2¢12
2014
2016
2¢19

2¢1B
2¢1D
2¢1F
2¢21

2023
2¢25
2¢28

202A
2¢2¢
202F
2¢31
2034
2¢36
2039

2¢3C
2¢3E

2¢4¢
2042

2044
2046
2948

204A
2g4cC
20Q4E
2950
2952
2055
2957
2059

JMP

LDA
STA
LDA
STA
LDA
STA

LDA
STA
LDA
STA
LDX
JSR
STY

DEC
BNE
DEC
BMI

LDX
JSR
STY

LDA
JSR
LDA
JSR
LDA
JSR
JSR

INC
BNE

INC
BNE

LDA
STA
STA

INC

INC
BNE
JSR
LDA
STA
BNE

$2000
$#co
$4
$3c
s1¢

$3D
$11

s1¢
$12
$11
$13
$#g
$FBIE
$¢

$12
$201B
$13
$2¢1B

$f1
$FBLE
$1

$@
$FDDA
$#AQ
SFDED
$1
SFDDA
SF948

$5
$203cC
$4
$29gc
$ig
$4

$5

$4
$204A
$204A
$FC58
s#co

$4
$2¢gc

Set counter for 64 samples to run

before clearing screen and starting over.
Pick up low part of entered count from AlL
and store it for repeated use.

Pick up high part of entered count from AlH
and store it for repeated use.

Pick up low part of count:
store it in counter for this pass,
and also high part.

Set X for paddle ¢ read.
Call paddle read.
Store paddle § result in location @.

Count down delay loop low byte:
when zero, count down high byte.

Stay in the loop until high goes minus.

Set X for paddle 1 read.
Call paddle read.
Store paddle 1 result in location 1.

Pick up paddle § value.
Print it as a hex value.
Pick up a blank to print.
Print the blank.

Pick up paddle 1 value.
Print it as a hex value.
Print three blanks.

Delay for awhile to keep paddle 1 read
from upsetting paddle ¢ results.

Is it time to clear screen and restart?
NE means no, go back and sample again.

Wait a while before clearing screen.

Clear the screen.
Restore the per screen counter,

and go one more big round.

MISCELLANY

87

REGISTERS FOR BASIC MONITOR CALLS

Many of the entry points specified in this book require presetting of
regigters for proper operation. Following is a sample program,
written for APPLESOFT, which uses Monitor calls for conversion from
decimal to hex.

The theory behind the operation is that on a Monitor G command, the
registers are loaded from the SAVE area before going to the location
specified in PCL,H. Thus, by poking destination address into PCL,H

and the required register contents into XREG, YREG, an entry point in
the Monitor Go command processor can be used to pass the registers to
a selected routine.

DECIMAL TO HEX CONVERSION

APPLESOFT SAMPLE PROGRAM

1¢ REM CONVERT DECIMAL INPUT TO HEX OUTPUT
10¢ INPUT "ENTER NUMBER ";A Read the input.

11¢ IF A=99999 THEN END Provide a way to end the program.
15¢ CX =A / 256 Isolate the high byte.

2¢¢ POKE 71,C% Set YREG for PRNTYX call.

300 BX =A / 256 Get remainder from A/256.

31¢ B = BZ * 256 For low byte (XREG) POKE.

320 BX=A-B

35§ POKE 7¢,BX

40¢g POKE 59,249 Set PCH to $F9.

5¢¢ POKE 58,64 Set PCL to $44.

55¢ PRINT Print a blank line.

600 CALL 65209 Entry point in GO processor is FEB9Y.
65¢ PRINT Print a blank line.

7¢6¢ coTo 199 Go around for another number.

STEP AND TRACE PECULIARITIES

The Step and Trace functions in the 0ld Monitor incorrectly display
register contents under some circumstances. The STEP routine detects
and gives special attention to JSR, RTS, JMP, JMP indirect, RTI, and

BRK instructions.
from the SAVE area at $45-49.

In each case, the register contents are displayed
However, there is no SAVE call after

"execution" of these instructions, as there is for normally traced
instructions, so the re

SAVE area before

isters displayed are those present in the
execution of this instruction.

Therefore, on JSR and RTS, the displayed contents of the S-reg are

incorrect.

On the first instruction after a JSR or RTS, the S-reg

displays correctly, unless that also is an RTS or JSR.

88 MONITORS PEELED

The Step and Trace routines are not incorrect in handling of a BRK
instruction. That is, the address displayed for the BRK is correct,
instead of being off by two bytes, because the BRK is detected by the
STEP routine instead of being executed by the 6502.

Although step and trace can be very helpful for some program
debugging tasks, they cannot be used in tracing calls to the Monitor
(generally including "print" output) or for programs which use AlL,H
thru A4L,H.

Because of the lack of "CLD" at PCADJ ($F953), incorrect addresses

will be displayed if you set decimal mode (SED) within the program
being traced or stepped.

MISCELLANY 89

fqpple computear inc.

10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

950-0018-A

	Apple II Monitors Peeled
	Table of Contents
	Preface
	Introduction
	Chapter Overviews
	Chapter 1: Memory Allocation
	Monitor Usage Memory Map
	RAM Memory Allocation by Address
	Page Zero
	Pages One Through Three
	Pages Four Through Seven & Eleven
	Screen Memory Address Table

	Peripheral Controller Work Areas

	Chapter 2: Input & Output
	Keyboard Input Division Of Labor
	Table of Routines

	Calls to Keyboard Input Routines
	Table of Keyboard Input Calls
	Keyin Routine Replacement

	Keyboard Input Monitor Routine
	Address Table 1 - Character Input
	Address Table 2 - Line Input

	Overview - Text Output to the Screen
	Output Within the Scroll Window
	Page Zero Fields
	Scroll Window Output Routines

	Screen Format Control by Routine
	Screen Format Control by POKE/STORE
	Scroll Window Data Manipulations
	Address Table

	Cursor Position Control
	Address Table

	General Text to the Screen
	Address Table
	Control Characters

	Output Without the Scroll Window
	Address Table
	Applesoft Sample Program

	Secondary Display Areas
	Copy Primary to Secondary
	Set BASL,H for Secondary Display Page
	Address Table
	Direct Control Addresses
	Integer BASIC Sample Program
	Applesoft Sample Program

	Chapter 3: Interrupt Processing
	NMI Interrupt
	Reset Interrupt Support
	IRQ/BRK Interrupt Handling
	Reset Intrrupt - Old Monitor
	Address Table

	Reset Interrupt - Autostart Monitor
	Initialize System Configuration
	Cold/Warm Determination
	Power-On Initialization
	System Restart
	Reset Vector Modification by User
	Address Table

	IRQ/BRK Interrupts
	IRQ/BRK Interrupt Recognition
	IRQ Interrupt Handling
	BRK Instruction Interrupt
	BRK Instruction - Saving of Status
	BRK Instruction - Old Monitor
	BRK Instruction - Autostart Monitor
	Address Table

	Chapter 4: Miscellany
	Machine Language Development Aids
	Address Table

	LORES Plotting
	Page Zero Fields
	Address Table

	Data Manipulation Functions
	Rouitines
	Memory to Memory Move
	Jump to Address with Registers Loaded
	Increment Address Fields
	Save 6502 Registers
	Restore 6502 Registers
	Multiply Two Byte Fields
	Multiply Routine
	Divide Four Byte Dividend by Two Byte Divisor
	Establish a RESET Vector
	Convert Hex Characters to Value for Use
	Disassemble an Instruction
	Address Table
	Applesoft Sample Data Manipulation Program

	Monitor Command Processor
	Entering the Monitor Command Processor
	Calling the Monitor Command Processor
	Address Table
	Applesoft Sample Program

	Speaker Use Through the Monitor
	Address Table

	Casssette Tape Input & Output
	Write
	Read
	Cassette Input/Output Internal Routines
	HEADR
	RD2BIT
	RDBIT
	RDBYTE
	WRBIT
	WRBYTE

	Paddles, Buttons & Annunciator I/O
	Game I/O Hardware Address Table

	WAIT Routine
	Wait Routine Delay Times

	Use of Control-Y with Parameters
	Paddle Interference - Sample Program

	Registers for BASIC Monitor Calls
	Decimal to Hex Conversion
	STEP and TRACE Peculiarities

	Back Cover

